Compare commits

...

4 Commits

Author SHA1 Message Date
1991AcuraLegend
838246d147
Add setting to enable status bar display options (#111)
Some checks are pending
CI / build (push) Waiting to run
Add setting toggle that allows status bar display options in EpubReader.

Supported options would be as follows: 

- FULL: display as is today
- PROGRESS: display progress bar only
- BATTERY: display battery only
- NONE: hide status bar

---------

Co-authored-by: Dave Allie <dave@daveallie.com>
2025-12-28 10:48:27 +11:00
Eunchurn Park
f96b6ab29c
Improve EPUB cover image quality with pre-scaling and Atkinson dithering (#116)
## Summary

* **What is the goal of this PR?**

Replace simple threshold-based grayscale quantization with ordered
dithering using a 4x4 Bayer matrix. This eliminates color banding
artifacts and produces smoother gradients on e-ink display.

* **What changes are included?**

- Add 4x4 Bayer dithering matrix for 16-level threshold patterns
- Modify `grayscaleTo2Bit()` function to accept pixel coordinates and
apply position-based dithering
- Replace simple `grayscale >> 6` threshold with ordered dithering
algorithm that produces smoother gradients

## Additional Context

* Bayer matrix approach: The 4x4 Bayer matrix creates a repeating
pattern that distributes quantization error spatially, effectively
simulating 16 levels of gray using only 4 actual color levels (black,
dark gray, light gray, white).

* Cache invalidation: Existing cached `cover.bmp` files will need to be
deleted to see the improved rendering, as the converter only runs when
the cache is missing.
2025-12-28 10:38:14 +11:00
Brendan O'Leary
e3d0201365
Add 'Open' button hint to File Selection page (#136)
## Summary

In using my build of
https://github.com/daveallie/crosspoint-reader/pull/130 I realized that
we need a "open" button hint above the second button in the File browser

## Additional Context

* Add any other information that might be helpful for the reviewer
(e.g., performance implications, potential risks, specific areas to
focus on).
2025-12-28 10:36:26 +11:00
Eunchurn Park
286b47f489
fix(parser): remove MAX_LINES limit that truncates long chapters (#132)
## Summary

* **What is the goal of this PR?** Fixes a bug where text disappears
after approximately 25 pages in long chapters during EPUB indexing.

* **What changes are included?**
- Removed the `MAX_LINES = 1000` hard limit in
`ParsedText::computeLineBreaks()`
- Added safer infinite loop prevention by checking if `nextBreakIndex <=
currentWordIndex` and forcing advancement by one word when stuck

## Additional Context

* **Root cause:** The `MAX_LINES = 1000` limit was introduced to prevent
infinite loops, but it truncates content in long chapters. For example,
a 93KB chapter that generates ~242 pages (~9,680 lines) gets cut off at
~1000 lines, causing blank pages after page 25-27.

* **Solution approach:** Instead of a hard line limit, I now detect when
the line break algorithm gets stuck (when `nextBreakIndex` doesn't
advance) and force progress by moving one word at a time. This preserves
the infinite loop protection while allowing all content to be rendered.

* **Testing:** Verified with a Korean EPUB containing a 93KB chapter -
all 242 pages now render correctly without text disappearing.
2025-12-28 10:35:45 +11:00
11 changed files with 819 additions and 134 deletions

View File

@ -111,16 +111,17 @@ std::vector<size_t> ParsedText::computeLineBreaks(const int pageWidth, const int
// Stores the index of the word that starts the next line (last_word_index + 1) // Stores the index of the word that starts the next line (last_word_index + 1)
std::vector<size_t> lineBreakIndices; std::vector<size_t> lineBreakIndices;
size_t currentWordIndex = 0; size_t currentWordIndex = 0;
constexpr size_t MAX_LINES = 1000;
while (currentWordIndex < totalWordCount) { while (currentWordIndex < totalWordCount) {
if (lineBreakIndices.size() >= MAX_LINES) { size_t nextBreakIndex = ans[currentWordIndex] + 1;
break;
// Safety check: prevent infinite loop if nextBreakIndex doesn't advance
if (nextBreakIndex <= currentWordIndex) {
// Force advance by at least one word to avoid infinite loop
nextBreakIndex = currentWordIndex + 1;
} }
size_t nextBreakIndex = ans[currentWordIndex] + 1;
lineBreakIndices.push_back(nextBreakIndex); lineBreakIndices.push_back(nextBreakIndex);
currentWordIndex = nextBreakIndex; currentWordIndex = nextBreakIndex;
} }

View File

@ -3,6 +3,126 @@
#include <cstdlib> #include <cstdlib>
#include <cstring> #include <cstring>
// ============================================================================
// IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
// ============================================================================
// Note: For cover images, dithering is done in JpegToBmpConverter.cpp
// This file handles BMP reading - use simple quantization to avoid double-dithering
constexpr bool USE_FLOYD_STEINBERG = false; // Disabled - dithering done at JPEG conversion
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
// Brightness adjustments:
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 20; // Brightness offset (0-50), only if USE_BRIGHTNESS=true
constexpr bool GAMMA_CORRECTION = false; // Gamma curve, only if USE_BRIGHTNESS=true
// ============================================================================
// Integer approximation of gamma correction (brightens midtones)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
const int product = gray * 255;
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
}
// Simple quantization without dithering - just divide into 4 levels
static inline uint8_t quantizeSimple(int gray) {
if (USE_BRIGHTNESS) {
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
gray = applyGamma(gray);
}
return static_cast<uint8_t>(gray >> 6);
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
static inline uint8_t quantizeNoise(int gray, int x, int y) {
if (USE_BRIGHTNESS) {
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
gray = applyGamma(gray);
}
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24);
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function
static inline uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}
// Floyd-Steinberg quantization with error diffusion and serpentine scanning
// Returns 2-bit value (0-3) and updates error buffers
static inline uint8_t quantizeFloydSteinberg(int gray, int x, int width, int16_t* errorCurRow, int16_t* errorNextRow,
bool reverseDir) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!reverseDir) {
// Left to right
errorCurRow[x + 2] += (error * 7) >> 4; // Right: 7/16
errorNextRow[x] += (error * 3) >> 4; // Bottom-left: 3/16
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
errorNextRow[x + 2] += (error) >> 4; // Bottom-right: 1/16
} else {
// Right to left (mirrored)
errorCurRow[x] += (error * 7) >> 4; // Left: 7/16
errorNextRow[x + 2] += (error * 3) >> 4; // Bottom-right: 3/16
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
errorNextRow[x] += (error) >> 4; // Bottom-left: 1/16
}
return quantized;
}
Bitmap::~Bitmap() {
delete[] errorCurRow;
delete[] errorNextRow;
}
uint16_t Bitmap::readLE16(File& f) { uint16_t Bitmap::readLE16(File& f) {
const int c0 = f.read(); const int c0 = f.read();
const int c1 = f.read(); const int c1 = f.read();
@ -46,6 +166,8 @@ const char* Bitmap::errorToString(BmpReaderError err) {
return "UnsupportedCompression (expected BI_RGB or BI_BITFIELDS for 32bpp)"; return "UnsupportedCompression (expected BI_RGB or BI_BITFIELDS for 32bpp)";
case BmpReaderError::BadDimensions: case BmpReaderError::BadDimensions:
return "BadDimensions"; return "BadDimensions";
case BmpReaderError::ImageTooLarge:
return "ImageTooLarge (max 2048x3072)";
case BmpReaderError::PaletteTooLarge: case BmpReaderError::PaletteTooLarge:
return "PaletteTooLarge"; return "PaletteTooLarge";
@ -99,6 +221,13 @@ BmpReaderError Bitmap::parseHeaders() {
if (width <= 0 || height <= 0) return BmpReaderError::BadDimensions; if (width <= 0 || height <= 0) return BmpReaderError::BadDimensions;
// Safety limits to prevent memory issues on ESP32
constexpr int MAX_IMAGE_WIDTH = 2048;
constexpr int MAX_IMAGE_HEIGHT = 3072;
if (width > MAX_IMAGE_WIDTH || height > MAX_IMAGE_HEIGHT) {
return BmpReaderError::ImageTooLarge;
}
// Pre-calculate Row Bytes to avoid doing this every row // Pre-calculate Row Bytes to avoid doing this every row
rowBytes = (width * bpp + 31) / 32 * 4; rowBytes = (width * bpp + 31) / 32 * 4;
@ -115,21 +244,56 @@ BmpReaderError Bitmap::parseHeaders() {
return BmpReaderError::SeekPixelDataFailed; return BmpReaderError::SeekPixelDataFailed;
} }
// Allocate Floyd-Steinberg error buffers if enabled
if (USE_FLOYD_STEINBERG) {
delete[] errorCurRow;
delete[] errorNextRow;
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
lastRowY = -1;
}
return BmpReaderError::Ok; return BmpReaderError::Ok;
} }
// packed 2bpp output, 0 = black, 1 = dark gray, 2 = light gray, 3 = white // packed 2bpp output, 0 = black, 1 = dark gray, 2 = light gray, 3 = white
BmpReaderError Bitmap::readRow(uint8_t* data, uint8_t* rowBuffer) const { BmpReaderError Bitmap::readRow(uint8_t* data, uint8_t* rowBuffer, int rowY) const {
// Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes' // Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes'
if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow; if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow;
// Handle Floyd-Steinberg error buffer progression
const bool useFS = USE_FLOYD_STEINBERG && errorCurRow && errorNextRow;
if (useFS) {
// Check if we need to advance to next row (or reset if jumping)
if (rowY != lastRowY + 1 && rowY != 0) {
// Non-sequential row access - reset error buffers
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
} else if (rowY > 0) {
// Sequential access - swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
}
lastRowY = rowY;
}
uint8_t* outPtr = data; uint8_t* outPtr = data;
uint8_t currentOutByte = 0; uint8_t currentOutByte = 0;
int bitShift = 6; int bitShift = 6;
int currentX = 0;
// Helper lambda to pack 2bpp color into the output stream // Helper lambda to pack 2bpp color into the output stream
auto packPixel = [&](const uint8_t lum) { auto packPixel = [&](const uint8_t lum) {
uint8_t color = (lum >> 6); // Simple 2-bit reduction: 0-255 -> 0-3 uint8_t color;
if (useFS) {
// Floyd-Steinberg error diffusion
color = quantizeFloydSteinberg(lum, currentX, width, errorCurRow, errorNextRow, false);
} else {
// Simple quantization or noise dithering
color = quantize(lum, currentX, rowY);
}
currentOutByte |= (color << bitShift); currentOutByte |= (color << bitShift);
if (bitShift == 0) { if (bitShift == 0) {
*outPtr++ = currentOutByte; *outPtr++ = currentOutByte;
@ -138,6 +302,7 @@ BmpReaderError Bitmap::readRow(uint8_t* data, uint8_t* rowBuffer) const {
} else { } else {
bitShift -= 2; bitShift -= 2;
} }
currentX++;
}; };
uint8_t lum; uint8_t lum;
@ -196,5 +361,12 @@ BmpReaderError Bitmap::rewindToData() const {
return BmpReaderError::SeekPixelDataFailed; return BmpReaderError::SeekPixelDataFailed;
} }
// Reset Floyd-Steinberg error buffers when rewinding
if (USE_FLOYD_STEINBERG && errorCurRow && errorNextRow) {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
lastRowY = -1;
}
return BmpReaderError::Ok; return BmpReaderError::Ok;
} }

View File

@ -15,6 +15,7 @@ enum class BmpReaderError : uint8_t {
UnsupportedCompression, UnsupportedCompression,
BadDimensions, BadDimensions,
ImageTooLarge,
PaletteTooLarge, PaletteTooLarge,
SeekPixelDataFailed, SeekPixelDataFailed,
@ -28,8 +29,9 @@ class Bitmap {
static const char* errorToString(BmpReaderError err); static const char* errorToString(BmpReaderError err);
explicit Bitmap(File& file) : file(file) {} explicit Bitmap(File& file) : file(file) {}
~Bitmap();
BmpReaderError parseHeaders(); BmpReaderError parseHeaders();
BmpReaderError readRow(uint8_t* data, uint8_t* rowBuffer) const; BmpReaderError readRow(uint8_t* data, uint8_t* rowBuffer, int rowY) const;
BmpReaderError rewindToData() const; BmpReaderError rewindToData() const;
int getWidth() const { return width; } int getWidth() const { return width; }
int getHeight() const { return height; } int getHeight() const { return height; }
@ -49,4 +51,9 @@ class Bitmap {
uint16_t bpp = 0; uint16_t bpp = 0;
int rowBytes = 0; int rowBytes = 0;
uint8_t paletteLum[256] = {}; uint8_t paletteLum[256] = {};
// Floyd-Steinberg dithering state (mutable for const methods)
mutable int16_t* errorCurRow = nullptr;
mutable int16_t* errorNextRow = nullptr;
mutable int lastRowY = -1; // Track row progression for error propagation
}; };

View File

@ -132,7 +132,9 @@ void GfxRenderer::drawBitmap(const Bitmap& bitmap, const int x, const int y, con
isScaled = true; isScaled = true;
} }
const uint8_t outputRowSize = (bitmap.getWidth() + 3) / 4; // Calculate output row size (2 bits per pixel, packed into bytes)
// IMPORTANT: Use int, not uint8_t, to avoid overflow for images > 1020 pixels wide
const int outputRowSize = (bitmap.getWidth() + 3) / 4;
auto* outputRow = static_cast<uint8_t*>(malloc(outputRowSize)); auto* outputRow = static_cast<uint8_t*>(malloc(outputRowSize));
auto* rowBytes = static_cast<uint8_t*>(malloc(bitmap.getRowBytes())); auto* rowBytes = static_cast<uint8_t*>(malloc(bitmap.getRowBytes()));
@ -154,7 +156,7 @@ void GfxRenderer::drawBitmap(const Bitmap& bitmap, const int x, const int y, con
break; break;
} }
if (bitmap.readRow(outputRow, rowBytes) != BmpReaderError::Ok) { if (bitmap.readRow(outputRow, rowBytes, bmpY) != BmpReaderError::Ok) {
Serial.printf("[%lu] [GFX] Failed to read row %d from bitmap\n", millis(), bmpY); Serial.printf("[%lu] [GFX] Failed to read row %d from bitmap\n", millis(), bmpY);
free(outputRow); free(outputRow);
free(rowBytes); free(rowBytes);

View File

@ -13,24 +13,296 @@ struct JpegReadContext {
size_t bufferFilled; size_t bufferFilled;
}; };
// Helper function: Convert 8-bit grayscale to 2-bit (0-3) // ============================================================================
uint8_t JpegToBmpConverter::grayscaleTo2Bit(const uint8_t grayscale) { // IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
// Simple threshold mapping: // ============================================================================
// 0-63 -> 0 (black) constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantization), false: 2-bit (4 levels)
// 64-127 -> 1 (dark gray) // Dithering method selection (only one should be true, or all false for simple quantization):
// 128-191 -> 2 (light gray) constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
// 192-255 -> 3 (white) constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
return grayscale >> 6; constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
// Brightness/Contrast adjustments:
constexpr bool USE_BRIGHTNESS = true; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
constexpr bool GAMMA_CORRECTION = true; // Gamma curve (brightens midtones)
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
// ============================================================================
// Integer approximation of gamma correction (brightens midtones)
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
// Fast integer square root approximation for gamma ~0.5 (brightening)
// This brightens dark/mid tones while preserving highlights
const int product = gray * 255;
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
} }
// Apply contrast adjustment around midpoint (128)
// factor > 1.0 increases contrast, < 1.0 decreases
static inline int applyContrast(int gray) {
// Integer-based contrast: (gray - 128) * factor + 128
// Using fixed-point: factor 1.15 ≈ 115/100
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
return adjusted;
}
// Combined brightness/contrast/gamma adjustment
static inline int adjustPixel(int gray) {
if (!USE_BRIGHTNESS) return gray;
// Order: contrast first, then brightness, then gamma
gray = applyContrast(gray);
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
if (gray < 0) gray = 0;
gray = applyGamma(gray);
return gray;
}
// Simple quantization without dithering - just divide into 4 levels
static inline uint8_t quantizeSimple(int gray) {
gray = adjustPixel(gray);
// Simple 2-bit quantization: 0-63=0, 64-127=1, 128-191=2, 192-255=3
return static_cast<uint8_t>(gray >> 6);
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
// Uses integer hash to generate pseudo-random threshold per pixel
static inline uint8_t quantizeNoise(int gray, int x, int y) {
gray = adjustPixel(gray);
// Generate noise threshold using integer hash (no regular pattern to alias)
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24); // 0-255
// Map gray (0-255) to 4 levels with dithering
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function - selects between methods based on config
static inline uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
// Error distribution pattern:
// X 1/8 1/8
// 1/8 1/8 1/8
// 1/8
// Less error buildup = fewer artifacts than Floyd-Steinberg
class AtkinsonDitherer {
public:
AtkinsonDitherer(int width) : width(width) {
errorRow0 = new int16_t[width + 4](); // Current row
errorRow1 = new int16_t[width + 4](); // Next row
errorRow2 = new int16_t[width + 4](); // Row after next
}
~AtkinsonDitherer() {
delete[] errorRow0;
delete[] errorRow1;
delete[] errorRow2;
}
uint8_t processPixel(int gray, int x) {
// Apply brightness/contrast/gamma adjustments
gray = adjustPixel(gray);
// Add accumulated error
int adjusted = gray + errorRow0[x + 2];
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error (only distribute 6/8 = 75%)
int error = (adjusted - quantizedValue) >> 3; // error/8
// Distribute 1/8 to each of 6 neighbors
errorRow0[x + 3] += error; // Right
errorRow0[x + 4] += error; // Right+1
errorRow1[x + 1] += error; // Bottom-left
errorRow1[x + 2] += error; // Bottom
errorRow1[x + 3] += error; // Bottom-right
errorRow2[x + 2] += error; // Two rows down
return quantized;
}
void nextRow() {
int16_t* temp = errorRow0;
errorRow0 = errorRow1;
errorRow1 = errorRow2;
errorRow2 = temp;
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
void reset() {
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
private:
int width;
int16_t* errorRow0;
int16_t* errorRow1;
int16_t* errorRow2;
};
// Floyd-Steinberg error diffusion dithering with serpentine scanning
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
// Error distribution pattern (left-to-right):
// X 7/16
// 3/16 5/16 1/16
// Error distribution pattern (right-to-left, mirrored):
// 1/16 5/16 3/16
// 7/16 X
class FloydSteinbergDitherer {
public:
FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
}
~FloydSteinbergDitherer() {
delete[] errorCurRow;
delete[] errorNextRow;
}
// Process a single pixel and return quantized 2-bit value
// x is the logical x position (0 to width-1), direction handled internally
uint8_t processPixel(int gray, int x, bool reverseDirection) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!reverseDirection) {
// Left to right: standard distribution
// Right: 7/16
errorCurRow[x + 2] += (error * 7) >> 4;
// Bottom-left: 3/16
errorNextRow[x] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-right: 1/16
errorNextRow[x + 2] += (error) >> 4;
} else {
// Right to left: mirrored distribution
// Left: 7/16
errorCurRow[x] += (error * 7) >> 4;
// Bottom-right: 3/16
errorNextRow[x + 2] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-left: 1/16
errorNextRow[x] += (error) >> 4;
}
return quantized;
}
// Call at the end of each row to swap buffers
void nextRow() {
// Swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
// Clear the next row buffer
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount++;
}
// Check if current row should be processed in reverse
bool isReverseRow() const { return (rowCount & 1) != 0; }
// Reset for a new image or MCU block
void reset() {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount = 0;
}
private:
int width;
int rowCount;
int16_t* errorCurRow;
int16_t* errorNextRow;
};
inline void write16(Print& out, const uint16_t value) { inline void write16(Print& out, const uint16_t value) {
// out.write(reinterpret_cast<const uint8_t *>(&value), 2);
out.write(value & 0xFF); out.write(value & 0xFF);
out.write((value >> 8) & 0xFF); out.write((value >> 8) & 0xFF);
} }
inline void write32(Print& out, const uint32_t value) { inline void write32(Print& out, const uint32_t value) {
// out.write(reinterpret_cast<const uint8_t *>(&value), 4);
out.write(value & 0xFF); out.write(value & 0xFF);
out.write((value >> 8) & 0xFF); out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF); out.write((value >> 16) & 0xFF);
@ -38,13 +310,49 @@ inline void write32(Print& out, const uint32_t value) {
} }
inline void write32Signed(Print& out, const int32_t value) { inline void write32Signed(Print& out, const int32_t value) {
// out.write(reinterpret_cast<const uint8_t *>(&value), 4);
out.write(value & 0xFF); out.write(value & 0xFF);
out.write((value >> 8) & 0xFF); out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF); out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF); out.write((value >> 24) & 0xFF);
} }
// Helper function: Write BMP header with 8-bit grayscale (256 levels)
void writeBmpHeader8bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width + 3) / 4 * 4; // 8 bits per pixel, padded
const int imageSize = bytesPerRow * height;
const uint32_t paletteSize = 256 * 4; // 256 colors * 4 bytes (BGRA)
const uint32_t fileSize = 14 + 40 + paletteSize + imageSize;
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize);
write32(bmpOut, 0); // Reserved
write32(bmpOut, 14 + 40 + paletteSize); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 8); // Bits per pixel (8 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 256); // colorsUsed
write32(bmpOut, 256); // colorsImportant
// Color Palette (256 grayscale entries x 4 bytes = 1024 bytes)
for (int i = 0; i < 256; i++) {
bmpOut.write(static_cast<uint8_t>(i)); // Blue
bmpOut.write(static_cast<uint8_t>(i)); // Green
bmpOut.write(static_cast<uint8_t>(i)); // Red
bmpOut.write(static_cast<uint8_t>(0)); // Reserved
}
}
// Helper function: Write BMP header with 2-bit color depth // Helper function: Write BMP header with 2-bit color depth
void JpegToBmpConverter::writeBmpHeader(Print& bmpOut, const int width, const int height) { void JpegToBmpConverter::writeBmpHeader(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes) // Calculate row padding (each row must be multiple of 4 bytes)
@ -135,13 +443,59 @@ bool JpegToBmpConverter::jpegFileToBmpStream(File& jpegFile, Print& bmpOut) {
Serial.printf("[%lu] [JPG] JPEG dimensions: %dx%d, components: %d, MCUs: %dx%d\n", millis(), imageInfo.m_width, Serial.printf("[%lu] [JPG] JPEG dimensions: %dx%d, components: %d, MCUs: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, imageInfo.m_comps, imageInfo.m_MCUSPerRow, imageInfo.m_MCUSPerCol); imageInfo.m_height, imageInfo.m_comps, imageInfo.m_MCUSPerRow, imageInfo.m_MCUSPerCol);
// Write BMP header // Safety limits to prevent memory issues on ESP32
writeBmpHeader(bmpOut, imageInfo.m_width, imageInfo.m_height); constexpr int MAX_IMAGE_WIDTH = 2048;
constexpr int MAX_IMAGE_HEIGHT = 3072;
constexpr int MAX_MCU_ROW_BYTES = 65536;
// Calculate row parameters if (imageInfo.m_width > MAX_IMAGE_WIDTH || imageInfo.m_height > MAX_IMAGE_HEIGHT) {
const int bytesPerRow = (imageInfo.m_width * 2 + 31) / 32 * 4; Serial.printf("[%lu] [JPG] Image too large (%dx%d), max supported: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT);
return false;
}
// Allocate row buffer for packed 2-bit pixels // Calculate output dimensions (pre-scale to fit display exactly)
int outWidth = imageInfo.m_width;
int outHeight = imageInfo.m_height;
// Use fixed-point scaling (16.16) for sub-pixel accuracy
uint32_t scaleX_fp = 65536; // 1.0 in 16.16 fixed point
uint32_t scaleY_fp = 65536;
bool needsScaling = false;
if (USE_PRESCALE && (imageInfo.m_width > TARGET_MAX_WIDTH || imageInfo.m_height > TARGET_MAX_HEIGHT)) {
// Calculate scale to fit within target dimensions while maintaining aspect ratio
const float scaleToFitWidth = static_cast<float>(TARGET_MAX_WIDTH) / imageInfo.m_width;
const float scaleToFitHeight = static_cast<float>(TARGET_MAX_HEIGHT) / imageInfo.m_height;
const float scale = (scaleToFitWidth < scaleToFitHeight) ? scaleToFitWidth : scaleToFitHeight;
outWidth = static_cast<int>(imageInfo.m_width * scale);
outHeight = static_cast<int>(imageInfo.m_height * scale);
// Ensure at least 1 pixel
if (outWidth < 1) outWidth = 1;
if (outHeight < 1) outHeight = 1;
// Calculate fixed-point scale factors (source pixels per output pixel)
// scaleX_fp = (srcWidth << 16) / outWidth
scaleX_fp = (static_cast<uint32_t>(imageInfo.m_width) << 16) / outWidth;
scaleY_fp = (static_cast<uint32_t>(imageInfo.m_height) << 16) / outHeight;
needsScaling = true;
Serial.printf("[%lu] [JPG] Pre-scaling %dx%d -> %dx%d (fit to %dx%d)\n", millis(), imageInfo.m_width,
imageInfo.m_height, outWidth, outHeight, TARGET_MAX_WIDTH, TARGET_MAX_HEIGHT);
}
// Write BMP header with output dimensions
int bytesPerRow;
if (USE_8BIT_OUTPUT) {
writeBmpHeader8bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth + 3) / 4 * 4;
} else {
writeBmpHeader(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth * 2 + 31) / 32 * 4;
}
// Allocate row buffer
auto* rowBuffer = static_cast<uint8_t*>(malloc(bytesPerRow)); auto* rowBuffer = static_cast<uint8_t*>(malloc(bytesPerRow));
if (!rowBuffer) { if (!rowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate row buffer\n", millis()); Serial.printf("[%lu] [JPG] Failed to allocate row buffer\n", millis());
@ -152,13 +506,48 @@ bool JpegToBmpConverter::jpegFileToBmpStream(File& jpegFile, Print& bmpOut) {
// This is the minimal memory needed for streaming conversion // This is the minimal memory needed for streaming conversion
const int mcuPixelHeight = imageInfo.m_MCUHeight; const int mcuPixelHeight = imageInfo.m_MCUHeight;
const int mcuRowPixels = imageInfo.m_width * mcuPixelHeight; const int mcuRowPixels = imageInfo.m_width * mcuPixelHeight;
auto* mcuRowBuffer = static_cast<uint8_t*>(malloc(mcuRowPixels));
if (!mcuRowBuffer) { // Validate MCU row buffer size before allocation
Serial.printf("[%lu] [JPG] Failed to allocate MCU row buffer\n", millis()); if (mcuRowPixels > MAX_MCU_ROW_BYTES) {
Serial.printf("[%lu] [JPG] MCU row buffer too large (%d bytes), max: %d\n", millis(), mcuRowPixels,
MAX_MCU_ROW_BYTES);
free(rowBuffer); free(rowBuffer);
return false; return false;
} }
auto* mcuRowBuffer = static_cast<uint8_t*>(malloc(mcuRowPixels));
if (!mcuRowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate MCU row buffer (%d bytes)\n", millis(), mcuRowPixels);
free(rowBuffer);
return false;
}
// Create ditherer if enabled (only for 2-bit output)
// Use OUTPUT dimensions for dithering (after prescaling)
AtkinsonDitherer* atkinsonDitherer = nullptr;
FloydSteinbergDitherer* fsDitherer = nullptr;
if (!USE_8BIT_OUTPUT) {
if (USE_ATKINSON) {
atkinsonDitherer = new AtkinsonDitherer(outWidth);
} else if (USE_FLOYD_STEINBERG) {
fsDitherer = new FloydSteinbergDitherer(outWidth);
}
}
// For scaling: accumulate source rows into scaled output rows
// We need to track which source Y maps to which output Y
// Using fixed-point: srcY_fp = outY * scaleY_fp (gives source Y in 16.16 format)
uint32_t* rowAccum = nullptr; // Accumulator for each output X (32-bit for larger sums)
uint16_t* rowCount = nullptr; // Count of source pixels accumulated per output X
int currentOutY = 0; // Current output row being accumulated
uint32_t nextOutY_srcStart = 0; // Source Y where next output row starts (16.16 fixed point)
if (needsScaling) {
rowAccum = new uint32_t[outWidth]();
rowCount = new uint16_t[outWidth]();
nextOutY_srcStart = scaleY_fp; // First boundary is at scaleY_fp (source Y for outY=1)
}
// Process MCUs row-by-row and write to BMP as we go (top-down) // Process MCUs row-by-row and write to BMP as we go (top-down)
const int mcuPixelWidth = imageInfo.m_MCUWidth; const int mcuPixelWidth = imageInfo.m_MCUWidth;
@ -181,75 +570,164 @@ bool JpegToBmpConverter::jpegFileToBmpStream(File& jpegFile, Print& bmpOut) {
return false; return false;
} }
// Process MCU block into MCU row buffer // picojpeg stores MCU data in 8x8 blocks
// MCUs are composed of 8x8 blocks. For 16x16 MCUs, there are four 8x8 blocks: // Block layout: H2V2(16x16)=0,64,128,192 H2V1(16x8)=0,64 H1V2(8x16)=0,128
// Block layout for 16x16 MCU: [0, 64] (top row of blocks)
// [128, 192] (bottom row of blocks)
for (int blockY = 0; blockY < mcuPixelHeight; blockY++) { for (int blockY = 0; blockY < mcuPixelHeight; blockY++) {
for (int blockX = 0; blockX < mcuPixelWidth; blockX++) { for (int blockX = 0; blockX < mcuPixelWidth; blockX++) {
const int pixelX = mcuX * mcuPixelWidth + blockX; const int pixelX = mcuX * mcuPixelWidth + blockX;
if (pixelX >= imageInfo.m_width) continue;
// Skip pixels outside image width (can happen with MCU alignment) // Calculate proper block offset for picojpeg buffer
if (pixelX >= imageInfo.m_width) { const int blockCol = blockX / 8;
continue; const int blockRow = blockY / 8;
} const int localX = blockX % 8;
const int localY = blockY % 8;
const int blocksPerRow = mcuPixelWidth / 8;
const int blockIndex = blockRow * blocksPerRow + blockCol;
const int pixelOffset = blockIndex * 64 + localY * 8 + localX;
// Calculate which 8x8 block and position within that block
const int block8x8Col = blockX / 8; // 0 or 1 for 16-wide MCU
const int block8x8Row = blockY / 8; // 0 or 1 for 16-tall MCU
const int pixelInBlockX = blockX % 8;
const int pixelInBlockY = blockY % 8;
// Calculate byte offset: each 8x8 block is 64 bytes
// Blocks are arranged: [0, 64], [128, 192]
const int blockOffset = (block8x8Row * (mcuPixelWidth / 8) + block8x8Col) * 64;
const int mcuIndex = blockOffset + pixelInBlockY * 8 + pixelInBlockX;
// Get grayscale value
uint8_t gray; uint8_t gray;
if (imageInfo.m_comps == 1) { if (imageInfo.m_comps == 1) {
// Grayscale image gray = imageInfo.m_pMCUBufR[pixelOffset];
gray = imageInfo.m_pMCUBufR[mcuIndex];
} else { } else {
// RGB image - convert to grayscale const uint8_t r = imageInfo.m_pMCUBufR[pixelOffset];
const uint8_t r = imageInfo.m_pMCUBufR[mcuIndex]; const uint8_t g = imageInfo.m_pMCUBufG[pixelOffset];
const uint8_t g = imageInfo.m_pMCUBufG[mcuIndex]; const uint8_t b = imageInfo.m_pMCUBufB[pixelOffset];
const uint8_t b = imageInfo.m_pMCUBufB[mcuIndex]; gray = (r * 25 + g * 50 + b * 25) / 100;
// Luminance formula: Y = 0.299*R + 0.587*G + 0.114*B
// Using integer approximation: (30*R + 59*G + 11*B) / 100
gray = (r * 30 + g * 59 + b * 11) / 100;
} }
// Store grayscale value in MCU row buffer
mcuRowBuffer[blockY * imageInfo.m_width + pixelX] = gray; mcuRowBuffer[blockY * imageInfo.m_width + pixelX] = gray;
} }
} }
} }
// Write all pixel rows from this MCU row to BMP file // Process source rows from this MCU row
const int startRow = mcuY * mcuPixelHeight; const int startRow = mcuY * mcuPixelHeight;
const int endRow = (mcuY + 1) * mcuPixelHeight; const int endRow = (mcuY + 1) * mcuPixelHeight;
for (int y = startRow; y < endRow && y < imageInfo.m_height; y++) { for (int y = startRow; y < endRow && y < imageInfo.m_height; y++) {
memset(rowBuffer, 0, bytesPerRow); const int bufferY = y - startRow;
// Pack 4 pixels per byte (2 bits each) if (!needsScaling) {
for (int x = 0; x < imageInfo.m_width; x++) { // No scaling - direct output (1:1 mapping)
const int bufferY = y - startRow; memset(rowBuffer, 0, bytesPerRow);
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
const uint8_t twoBit = grayscaleTo2Bit(gray);
const int byteIndex = (x * 2) / 8; if (USE_8BIT_OUTPUT) {
const int bitOffset = 6 - ((x * 2) % 8); // 6, 4, 2, 0 for (int x = 0; x < outWidth; x++) {
rowBuffer[byteIndex] |= (twoBit << bitOffset); const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
rowBuffer[x] = adjustPixel(gray);
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
} else {
twoBit = quantize(gray, x, y);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
} else {
// Fixed-point area averaging for exact fit scaling
// For each output pixel X, accumulate source pixels that map to it
// srcX range for outX: [outX * scaleX_fp >> 16, (outX+1) * scaleX_fp >> 16)
const uint8_t* srcRow = mcuRowBuffer + bufferY * imageInfo.m_width;
for (int outX = 0; outX < outWidth; outX++) {
// Calculate source X range for this output pixel
const int srcXStart = (static_cast<uint32_t>(outX) * scaleX_fp) >> 16;
const int srcXEnd = (static_cast<uint32_t>(outX + 1) * scaleX_fp) >> 16;
// Accumulate all source pixels in this range
int sum = 0;
int count = 0;
for (int srcX = srcXStart; srcX < srcXEnd && srcX < imageInfo.m_width; srcX++) {
sum += srcRow[srcX];
count++;
}
// Handle edge case: if no pixels in range, use nearest
if (count == 0 && srcXStart < imageInfo.m_width) {
sum = srcRow[srcXStart];
count = 1;
}
rowAccum[outX] += sum;
rowCount[outX] += count;
}
// Check if we've crossed into the next output row
// Current source Y in fixed point: y << 16
const uint32_t srcY_fp = static_cast<uint32_t>(y + 1) << 16;
// Output row when source Y crosses the boundary
if (srcY_fp >= nextOutY_srcStart && currentOutY < outHeight) {
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
rowBuffer[x] = adjustPixel(gray);
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
} else {
twoBit = quantize(gray, x, currentOutY);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
currentOutY++;
// Reset accumulators for next output row
memset(rowAccum, 0, outWidth * sizeof(uint32_t));
memset(rowCount, 0, outWidth * sizeof(uint16_t));
// Update boundary for next output row
nextOutY_srcStart = static_cast<uint32_t>(currentOutY + 1) * scaleY_fp;
}
} }
// Write row with padding
bmpOut.write(rowBuffer, bytesPerRow);
} }
} }
// Clean up // Clean up
if (rowAccum) {
delete[] rowAccum;
}
if (rowCount) {
delete[] rowCount;
}
if (atkinsonDitherer) {
delete atkinsonDitherer;
}
if (fsDitherer) {
delete fsDitherer;
}
free(mcuRowBuffer); free(mcuRowBuffer);
free(rowBuffer); free(rowBuffer);

View File

@ -6,7 +6,7 @@ class ZipFile;
class JpegToBmpConverter { class JpegToBmpConverter {
static void writeBmpHeader(Print& bmpOut, int width, int height); static void writeBmpHeader(Print& bmpOut, int width, int height);
static uint8_t grayscaleTo2Bit(uint8_t grayscale); // [COMMENTED OUT] static uint8_t grayscaleTo2Bit(uint8_t grayscale, int x, int y);
static unsigned char jpegReadCallback(unsigned char* pBuf, unsigned char buf_size, static unsigned char jpegReadCallback(unsigned char* pBuf, unsigned char buf_size,
unsigned char* pBytes_actually_read, void* pCallback_data); unsigned char* pBytes_actually_read, void* pCallback_data);

View File

@ -10,7 +10,7 @@ CrossPointSettings CrossPointSettings::instance;
namespace { namespace {
constexpr uint8_t SETTINGS_FILE_VERSION = 1; constexpr uint8_t SETTINGS_FILE_VERSION = 1;
constexpr uint8_t SETTINGS_COUNT = 3; constexpr uint8_t SETTINGS_COUNT = 4;
constexpr char SETTINGS_FILE[] = "/.crosspoint/settings.bin"; constexpr char SETTINGS_FILE[] = "/.crosspoint/settings.bin";
} // namespace } // namespace
@ -28,6 +28,7 @@ bool CrossPointSettings::saveToFile() const {
serialization::writePod(outputFile, sleepScreen); serialization::writePod(outputFile, sleepScreen);
serialization::writePod(outputFile, extraParagraphSpacing); serialization::writePod(outputFile, extraParagraphSpacing);
serialization::writePod(outputFile, shortPwrBtn); serialization::writePod(outputFile, shortPwrBtn);
serialization::writePod(outputFile, statusBar);
outputFile.close(); outputFile.close();
Serial.printf("[%lu] [CPS] Settings saved to file\n", millis()); Serial.printf("[%lu] [CPS] Settings saved to file\n", millis());
@ -60,6 +61,8 @@ bool CrossPointSettings::loadFromFile() {
if (++settingsRead >= fileSettingsCount) break; if (++settingsRead >= fileSettingsCount) break;
serialization::readPod(inputFile, shortPwrBtn); serialization::readPod(inputFile, shortPwrBtn);
if (++settingsRead >= fileSettingsCount) break; if (++settingsRead >= fileSettingsCount) break;
serialization::readPod(inputFile, statusBar);
if (++settingsRead >= fileSettingsCount) break;
} while (false); } while (false);
inputFile.close(); inputFile.close();

View File

@ -18,8 +18,13 @@ class CrossPointSettings {
// Should match with SettingsActivity text // Should match with SettingsActivity text
enum SLEEP_SCREEN_MODE { DARK = 0, LIGHT = 1, CUSTOM = 2, COVER = 3 }; enum SLEEP_SCREEN_MODE { DARK = 0, LIGHT = 1, CUSTOM = 2, COVER = 3 };
// Status bar display type enum
enum STATUS_BAR_MODE { NONE = 0, NO_PROGRESS = 1, FULL = 2 };
// Sleep screen settings // Sleep screen settings
uint8_t sleepScreen = DARK; uint8_t sleepScreen = DARK;
// Status bar settings
uint8_t statusBar = FULL;
// Text rendering settings // Text rendering settings
uint8_t extraParagraphSpacing = 1; uint8_t extraParagraphSpacing = 1;
// Duration of the power button press // Duration of the power button press

View File

@ -340,71 +340,87 @@ void EpubReaderActivity::renderContents(std::unique_ptr<Page> page) {
} }
void EpubReaderActivity::renderStatusBar() const { void EpubReaderActivity::renderStatusBar() const {
// determine visible status bar elements
const bool showProgress = SETTINGS.statusBar == CrossPointSettings::STATUS_BAR_MODE::FULL;
const bool showBattery = SETTINGS.statusBar == CrossPointSettings::STATUS_BAR_MODE::NO_PROGRESS ||
SETTINGS.statusBar == CrossPointSettings::STATUS_BAR_MODE::FULL;
const bool showChapterTitle = SETTINGS.statusBar == CrossPointSettings::STATUS_BAR_MODE::NO_PROGRESS ||
SETTINGS.statusBar == CrossPointSettings::STATUS_BAR_MODE::FULL;
// height variable shared by all elements
constexpr auto textY = 776; constexpr auto textY = 776;
int percentageTextWidth = 0;
int progressTextWidth = 0;
// Calculate progress in book if (showProgress) {
const float sectionChapterProg = static_cast<float>(section->currentPage) / section->pageCount; // Calculate progress in book
const uint8_t bookProgress = epub->calculateProgress(currentSpineIndex, sectionChapterProg); const float sectionChapterProg = static_cast<float>(section->currentPage) / section->pageCount;
const uint8_t bookProgress = epub->calculateProgress(currentSpineIndex, sectionChapterProg);
// Right aligned text for progress counter // Right aligned text for progress counter
const std::string progress = std::to_string(section->currentPage + 1) + "/" + std::to_string(section->pageCount) + const std::string progress = std::to_string(section->currentPage + 1) + "/" + std::to_string(section->pageCount) +
" " + std::to_string(bookProgress) + "%"; " " + std::to_string(bookProgress) + "%";
const auto progressTextWidth = renderer.getTextWidth(SMALL_FONT_ID, progress.c_str()); progressTextWidth = renderer.getTextWidth(SMALL_FONT_ID, progress.c_str());
renderer.drawText(SMALL_FONT_ID, GfxRenderer::getScreenWidth() - marginRight - progressTextWidth, textY, renderer.drawText(SMALL_FONT_ID, GfxRenderer::getScreenWidth() - marginRight - progressTextWidth, textY,
progress.c_str()); progress.c_str());
// Left aligned battery icon and percentage
const uint16_t percentage = battery.readPercentage();
const auto percentageText = std::to_string(percentage) + "%";
const auto percentageTextWidth = renderer.getTextWidth(SMALL_FONT_ID, percentageText.c_str());
renderer.drawText(SMALL_FONT_ID, 20 + marginLeft, textY, percentageText.c_str());
// 1 column on left, 2 columns on right, 5 columns of battery body
constexpr int batteryWidth = 15;
constexpr int batteryHeight = 10;
constexpr int x = marginLeft;
constexpr int y = 783;
// Top line
renderer.drawLine(x, y, x + batteryWidth - 4, y);
// Bottom line
renderer.drawLine(x, y + batteryHeight - 1, x + batteryWidth - 4, y + batteryHeight - 1);
// Left line
renderer.drawLine(x, y, x, y + batteryHeight - 1);
// Battery end
renderer.drawLine(x + batteryWidth - 4, y, x + batteryWidth - 4, y + batteryHeight - 1);
renderer.drawLine(x + batteryWidth - 3, y + 2, x + batteryWidth - 1, y + 2);
renderer.drawLine(x + batteryWidth - 3, y + batteryHeight - 3, x + batteryWidth - 1, y + batteryHeight - 3);
renderer.drawLine(x + batteryWidth - 1, y + 2, x + batteryWidth - 1, y + batteryHeight - 3);
// The +1 is to round up, so that we always fill at least one pixel
int filledWidth = percentage * (batteryWidth - 5) / 100 + 1;
if (filledWidth > batteryWidth - 5) {
filledWidth = batteryWidth - 5; // Ensure we don't overflow
} }
renderer.fillRect(x + 1, y + 1, filledWidth, batteryHeight - 2);
// Centered chatper title text if (showBattery) {
// Page width minus existing content with 30px padding on each side // Left aligned battery icon and percentage
const int titleMarginLeft = 20 + percentageTextWidth + 30 + marginLeft; const uint16_t percentage = battery.readPercentage();
const int titleMarginRight = progressTextWidth + 30 + marginRight; const auto percentageText = std::to_string(percentage) + "%";
const int availableTextWidth = GfxRenderer::getScreenWidth() - titleMarginLeft - titleMarginRight; percentageTextWidth = renderer.getTextWidth(SMALL_FONT_ID, percentageText.c_str());
const int tocIndex = epub->getTocIndexForSpineIndex(currentSpineIndex); renderer.drawText(SMALL_FONT_ID, 20 + marginLeft, textY, percentageText.c_str());
std::string title; // 1 column on left, 2 columns on right, 5 columns of battery body
int titleWidth; constexpr int batteryWidth = 15;
if (tocIndex == -1) { constexpr int batteryHeight = 10;
title = "Unnamed"; constexpr int x = marginLeft;
titleWidth = renderer.getTextWidth(SMALL_FONT_ID, "Unnamed"); constexpr int y = 783;
} else {
const auto tocItem = epub->getTocItem(tocIndex); // Top line
title = tocItem.title; renderer.drawLine(x, y, x + batteryWidth - 4, y);
titleWidth = renderer.getTextWidth(SMALL_FONT_ID, title.c_str()); // Bottom line
while (titleWidth > availableTextWidth && title.length() > 11) { renderer.drawLine(x, y + batteryHeight - 1, x + batteryWidth - 4, y + batteryHeight - 1);
title.replace(title.length() - 8, 8, "..."); // Left line
titleWidth = renderer.getTextWidth(SMALL_FONT_ID, title.c_str()); renderer.drawLine(x, y, x, y + batteryHeight - 1);
// Battery end
renderer.drawLine(x + batteryWidth - 4, y, x + batteryWidth - 4, y + batteryHeight - 1);
renderer.drawLine(x + batteryWidth - 3, y + 2, x + batteryWidth - 1, y + 2);
renderer.drawLine(x + batteryWidth - 3, y + batteryHeight - 3, x + batteryWidth - 1, y + batteryHeight - 3);
renderer.drawLine(x + batteryWidth - 1, y + 2, x + batteryWidth - 1, y + batteryHeight - 3);
// The +1 is to round up, so that we always fill at least one pixel
int filledWidth = percentage * (batteryWidth - 5) / 100 + 1;
if (filledWidth > batteryWidth - 5) {
filledWidth = batteryWidth - 5; // Ensure we don't overflow
} }
renderer.fillRect(x + 1, y + 1, filledWidth, batteryHeight - 2);
} }
renderer.drawText(SMALL_FONT_ID, titleMarginLeft + (availableTextWidth - titleWidth) / 2, textY, title.c_str()); if (showChapterTitle) {
// Centered chatper title text
// Page width minus existing content with 30px padding on each side
const int titleMarginLeft = 20 + percentageTextWidth + 30 + marginLeft;
const int titleMarginRight = progressTextWidth + 30 + marginRight;
const int availableTextWidth = GfxRenderer::getScreenWidth() - titleMarginLeft - titleMarginRight;
const int tocIndex = epub->getTocIndexForSpineIndex(currentSpineIndex);
std::string title;
int titleWidth;
if (tocIndex == -1) {
title = "Unnamed";
titleWidth = renderer.getTextWidth(SMALL_FONT_ID, "Unnamed");
} else {
const auto tocItem = epub->getTocItem(tocIndex);
title = tocItem.title;
titleWidth = renderer.getTextWidth(SMALL_FONT_ID, title.c_str());
while (titleWidth > availableTextWidth && title.length() > 11) {
title.replace(title.length() - 8, 8, "...");
titleWidth = renderer.getTextWidth(SMALL_FONT_ID, title.c_str());
}
}
renderer.drawText(SMALL_FONT_ID, titleMarginLeft + (availableTextWidth - titleWidth) / 2, textY, title.c_str());
}
} }

View File

@ -162,7 +162,7 @@ void FileSelectionActivity::render() const {
renderer.drawCenteredText(READER_FONT_ID, 10, "Books", true, BOLD); renderer.drawCenteredText(READER_FONT_ID, 10, "Books", true, BOLD);
// Help text // Help text
renderer.drawButtonHints(UI_FONT_ID, "« Home", "", "", ""); renderer.drawButtonHints(UI_FONT_ID, "« Home", "Open", "", "");
if (files.empty()) { if (files.empty()) {
renderer.drawText(UI_FONT_ID, 20, 60, "No EPUBs found"); renderer.drawText(UI_FONT_ID, 20, 60, "No EPUBs found");

View File

@ -9,10 +9,11 @@
// Define the static settings list // Define the static settings list
namespace { namespace {
constexpr int settingsCount = 4; constexpr int settingsCount = 5;
const SettingInfo settingsList[settingsCount] = { const SettingInfo settingsList[settingsCount] = {
// Should match with SLEEP_SCREEN_MODE // Should match with SLEEP_SCREEN_MODE
{"Sleep Screen", SettingType::ENUM, &CrossPointSettings::sleepScreen, {"Dark", "Light", "Custom", "Cover"}}, {"Sleep Screen", SettingType::ENUM, &CrossPointSettings::sleepScreen, {"Dark", "Light", "Custom", "Cover"}},
{"Status Bar", SettingType::ENUM, &CrossPointSettings::statusBar, {"None", "No Progress", "Full"}},
{"Extra Paragraph Spacing", SettingType::TOGGLE, &CrossPointSettings::extraParagraphSpacing, {}}, {"Extra Paragraph Spacing", SettingType::TOGGLE, &CrossPointSettings::extraParagraphSpacing, {}},
{"Short Power Button Click", SettingType::TOGGLE, &CrossPointSettings::shortPwrBtn, {}}, {"Short Power Button Click", SettingType::TOGGLE, &CrossPointSettings::shortPwrBtn, {}},
{"Check for updates", SettingType::ACTION, nullptr, {}}, {"Check for updates", SettingType::ACTION, nullptr, {}},