#include "GfxRenderer.h" #include void GfxRenderer::insertFont(const int fontId, EpdFontFamily font) { fontMap.insert({fontId, font}); } void GfxRenderer::rotateCoordinates(const int x, const int y, int* rotatedX, int* rotatedY) const { switch (orientation) { case Portrait: { // Logical portrait (480x800) → panel (800x480) // Rotation: 90 degrees clockwise *rotatedX = y; *rotatedY = HalDisplay::DISPLAY_HEIGHT - 1 - x; break; } case LandscapeClockwise: { // Logical landscape (800x480) rotated 180 degrees (swap top/bottom and left/right) *rotatedX = HalDisplay::DISPLAY_WIDTH - 1 - x; *rotatedY = HalDisplay::DISPLAY_HEIGHT - 1 - y; break; } case PortraitInverted: { // Logical portrait (480x800) → panel (800x480) // Rotation: 90 degrees counter-clockwise *rotatedX = HalDisplay::DISPLAY_WIDTH - 1 - y; *rotatedY = x; break; } case LandscapeCounterClockwise: { // Logical landscape (800x480) aligned with panel orientation *rotatedX = x; *rotatedY = y; break; } } } void GfxRenderer::drawPixel(const int x, const int y, const bool state) const { uint8_t* frameBuffer = display.getFrameBuffer(); // Early return if no framebuffer is set if (!frameBuffer) { Serial.printf("[%lu] [GFX] !! No framebuffer\n", millis()); return; } int rotatedX = 0; int rotatedY = 0; rotateCoordinates(x, y, &rotatedX, &rotatedY); // Bounds checking against physical panel dimensions if (rotatedX < 0 || rotatedX >= HalDisplay::DISPLAY_WIDTH || rotatedY < 0 || rotatedY >= HalDisplay::DISPLAY_HEIGHT) { Serial.printf("[%lu] [GFX] !! Outside range (%d, %d) -> (%d, %d)\n", millis(), x, y, rotatedX, rotatedY); return; } // Calculate byte position and bit position const uint16_t byteIndex = rotatedY * HalDisplay::DISPLAY_WIDTH_BYTES + (rotatedX / 8); const uint8_t bitPosition = 7 - (rotatedX % 8); // MSB first if (state) { frameBuffer[byteIndex] &= ~(1 << bitPosition); // Clear bit } else { frameBuffer[byteIndex] |= 1 << bitPosition; // Set bit } } int GfxRenderer::getTextWidth(const int fontId, const char* text, const EpdFontFamily::Style style) const { if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return 0; } int w = 0, h = 0; fontMap.at(fontId).getTextDimensions(text, &w, &h, style); return w; } void GfxRenderer::drawCenteredText(const int fontId, const int y, const char* text, const bool black, const EpdFontFamily::Style style) const { const int x = (getScreenWidth() - getTextWidth(fontId, text, style)) / 2; drawText(fontId, x, y, text, black, style); } void GfxRenderer::drawText(const int fontId, const int x, const int y, const char* text, const bool black, const EpdFontFamily::Style style) const { const int yPos = y + getFontAscenderSize(fontId); int xpos = x; // cannot draw a NULL / empty string if (text == nullptr || *text == '\0') { return; } if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return; } const auto font = fontMap.at(fontId); // no printable characters if (!font.hasPrintableChars(text, style)) { return; } uint32_t cp; while ((cp = utf8NextCodepoint(reinterpret_cast(&text)))) { renderChar(font, cp, &xpos, &yPos, black, style); } } void GfxRenderer::drawLine(int x1, int y1, int x2, int y2, const bool state) const { if (x1 == x2) { if (y2 < y1) { std::swap(y1, y2); } for (int y = y1; y <= y2; y++) { drawPixel(x1, y, state); } } else if (y1 == y2) { if (x2 < x1) { std::swap(x1, x2); } for (int x = x1; x <= x2; x++) { drawPixel(x, y1, state); } } else { // TODO: Implement Serial.printf("[%lu] [GFX] Line drawing not supported\n", millis()); } } void GfxRenderer::drawRect(const int x, const int y, const int width, const int height, const bool state) const { drawLine(x, y, x + width - 1, y, state); drawLine(x + width - 1, y, x + width - 1, y + height - 1, state); drawLine(x + width - 1, y + height - 1, x, y + height - 1, state); drawLine(x, y, x, y + height - 1, state); } void GfxRenderer::fillRect(const int x, const int y, const int width, const int height, const bool state) const { for (int fillY = y; fillY < y + height; fillY++) { drawLine(x, fillY, x + width - 1, fillY, state); } } void GfxRenderer::drawImage(const uint8_t bitmap[], const int x, const int y, const int width, const int height) const { int rotatedX = 0; int rotatedY = 0; rotateCoordinates(x, y, &rotatedX, &rotatedY); // Rotate origin corner switch (orientation) { case Portrait: rotatedY = rotatedY - height; break; case PortraitInverted: rotatedX = rotatedX - width; break; case LandscapeClockwise: rotatedY = rotatedY - height; rotatedX = rotatedX - width; break; case LandscapeCounterClockwise: break; } // TODO: Rotate bits display.drawImage(bitmap, rotatedX, rotatedY, width, height); } void GfxRenderer::drawBitmap(const Bitmap& bitmap, const int x, const int y, const int maxWidth, const int maxHeight, const float cropX, const float cropY) const { // For 1-bit bitmaps, use optimized 1-bit rendering path (no crop support for 1-bit) if (bitmap.is1Bit() && cropX == 0.0f && cropY == 0.0f) { drawBitmap1Bit(bitmap, x, y, maxWidth, maxHeight); return; } float scale = 1.0f; bool isScaled = false; int cropPixX = std::floor(bitmap.getWidth() * cropX / 2.0f); int cropPixY = std::floor(bitmap.getHeight() * cropY / 2.0f); Serial.printf("[%lu] [GFX] Cropping %dx%d by %dx%d pix, is %s\n", millis(), bitmap.getWidth(), bitmap.getHeight(), cropPixX, cropPixY, bitmap.isTopDown() ? "top-down" : "bottom-up"); if (maxWidth > 0 && (1.0f - cropX) * bitmap.getWidth() > maxWidth) { scale = static_cast(maxWidth) / static_cast((1.0f - cropX) * bitmap.getWidth()); isScaled = true; } if (maxHeight > 0 && (1.0f - cropY) * bitmap.getHeight() > maxHeight) { scale = std::min(scale, static_cast(maxHeight) / static_cast((1.0f - cropY) * bitmap.getHeight())); isScaled = true; } Serial.printf("[%lu] [GFX] Scaling by %f - %s\n", millis(), scale, isScaled ? "scaled" : "not scaled"); // Calculate output row size (2 bits per pixel, packed into bytes) // IMPORTANT: Use int, not uint8_t, to avoid overflow for images > 1020 pixels wide const int outputRowSize = (bitmap.getWidth() + 3) / 4; auto* outputRow = static_cast(malloc(outputRowSize)); auto* rowBytes = static_cast(malloc(bitmap.getRowBytes())); if (!outputRow || !rowBytes) { Serial.printf("[%lu] [GFX] !! Failed to allocate BMP row buffers\n", millis()); free(outputRow); free(rowBytes); return; } for (int bmpY = 0; bmpY < (bitmap.getHeight() - cropPixY); bmpY++) { // The BMP's (0, 0) is the bottom-left corner (if the height is positive, top-left if negative). // Screen's (0, 0) is the top-left corner. int screenY = -cropPixY + (bitmap.isTopDown() ? bmpY : bitmap.getHeight() - 1 - bmpY); if (isScaled) { screenY = std::floor(screenY * scale); } screenY += y; // the offset should not be scaled if (screenY >= getScreenHeight()) { break; } if (bitmap.readNextRow(outputRow, rowBytes) != BmpReaderError::Ok) { Serial.printf("[%lu] [GFX] Failed to read row %d from bitmap\n", millis(), bmpY); free(outputRow); free(rowBytes); return; } if (screenY < 0) { continue; } if (bmpY < cropPixY) { // Skip the row if it's outside the crop area continue; } for (int bmpX = cropPixX; bmpX < bitmap.getWidth() - cropPixX; bmpX++) { int screenX = bmpX - cropPixX; if (isScaled) { screenX = std::floor(screenX * scale); } screenX += x; // the offset should not be scaled if (screenX >= getScreenWidth()) { break; } if (screenX < 0) { continue; } const uint8_t val = outputRow[bmpX / 4] >> (6 - ((bmpX * 2) % 8)) & 0x3; if (renderMode == BW && val < 3) { drawPixel(screenX, screenY); } else if (renderMode == GRAYSCALE_MSB && (val == 1 || val == 2)) { drawPixel(screenX, screenY, false); } else if (renderMode == GRAYSCALE_LSB && val == 1) { drawPixel(screenX, screenY, false); } } } free(outputRow); free(rowBytes); } void GfxRenderer::drawBitmap1Bit(const Bitmap& bitmap, const int x, const int y, const int maxWidth, const int maxHeight) const { float scale = 1.0f; bool isScaled = false; if (maxWidth > 0 && bitmap.getWidth() > maxWidth) { scale = static_cast(maxWidth) / static_cast(bitmap.getWidth()); isScaled = true; } if (maxHeight > 0 && bitmap.getHeight() > maxHeight) { scale = std::min(scale, static_cast(maxHeight) / static_cast(bitmap.getHeight())); isScaled = true; } // For 1-bit BMP, output is still 2-bit packed (for consistency with readNextRow) const int outputRowSize = (bitmap.getWidth() + 3) / 4; auto* outputRow = static_cast(malloc(outputRowSize)); auto* rowBytes = static_cast(malloc(bitmap.getRowBytes())); if (!outputRow || !rowBytes) { Serial.printf("[%lu] [GFX] !! Failed to allocate 1-bit BMP row buffers\n", millis()); free(outputRow); free(rowBytes); return; } for (int bmpY = 0; bmpY < bitmap.getHeight(); bmpY++) { // Read rows sequentially using readNextRow if (bitmap.readNextRow(outputRow, rowBytes) != BmpReaderError::Ok) { Serial.printf("[%lu] [GFX] Failed to read row %d from 1-bit bitmap\n", millis(), bmpY); free(outputRow); free(rowBytes); return; } // Calculate screen Y based on whether BMP is top-down or bottom-up const int bmpYOffset = bitmap.isTopDown() ? bmpY : bitmap.getHeight() - 1 - bmpY; int screenY = y + (isScaled ? static_cast(std::floor(bmpYOffset * scale)) : bmpYOffset); if (screenY >= getScreenHeight()) { continue; // Continue reading to keep row counter in sync } if (screenY < 0) { continue; } for (int bmpX = 0; bmpX < bitmap.getWidth(); bmpX++) { int screenX = x + (isScaled ? static_cast(std::floor(bmpX * scale)) : bmpX); if (screenX >= getScreenWidth()) { break; } if (screenX < 0) { continue; } // Get 2-bit value (result of readNextRow quantization) const uint8_t val = outputRow[bmpX / 4] >> (6 - ((bmpX * 2) % 8)) & 0x3; // For 1-bit source: 0 or 1 -> map to black (0,1,2) or white (3) // val < 3 means black pixel (draw it) if (val < 3) { drawPixel(screenX, screenY, true); } // White pixels (val == 3) are not drawn (leave background) } } free(outputRow); free(rowBytes); } void GfxRenderer::fillPolygon(const int* xPoints, const int* yPoints, int numPoints, bool state) const { if (numPoints < 3) return; // Find bounding box int minY = yPoints[0], maxY = yPoints[0]; for (int i = 1; i < numPoints; i++) { if (yPoints[i] < minY) minY = yPoints[i]; if (yPoints[i] > maxY) maxY = yPoints[i]; } // Clip to screen if (minY < 0) minY = 0; if (maxY >= getScreenHeight()) maxY = getScreenHeight() - 1; // Allocate node buffer for scanline algorithm auto* nodeX = static_cast(malloc(numPoints * sizeof(int))); if (!nodeX) { Serial.printf("[%lu] [GFX] !! Failed to allocate polygon node buffer\n", millis()); return; } // Scanline fill algorithm for (int scanY = minY; scanY <= maxY; scanY++) { int nodes = 0; // Find all intersection points with edges int j = numPoints - 1; for (int i = 0; i < numPoints; i++) { if ((yPoints[i] < scanY && yPoints[j] >= scanY) || (yPoints[j] < scanY && yPoints[i] >= scanY)) { // Calculate X intersection using fixed-point to avoid float int dy = yPoints[j] - yPoints[i]; if (dy != 0) { nodeX[nodes++] = xPoints[i] + (scanY - yPoints[i]) * (xPoints[j] - xPoints[i]) / dy; } } j = i; } // Sort nodes by X (simple bubble sort, numPoints is small) for (int i = 0; i < nodes - 1; i++) { for (int k = i + 1; k < nodes; k++) { if (nodeX[i] > nodeX[k]) { int temp = nodeX[i]; nodeX[i] = nodeX[k]; nodeX[k] = temp; } } } // Fill between pairs of nodes for (int i = 0; i < nodes - 1; i += 2) { int startX = nodeX[i]; int endX = nodeX[i + 1]; // Clip to screen if (startX < 0) startX = 0; if (endX >= getScreenWidth()) endX = getScreenWidth() - 1; // Draw horizontal line for (int x = startX; x <= endX; x++) { drawPixel(x, scanY, state); } } } free(nodeX); } void GfxRenderer::clearScreen(const uint8_t color) const { display.clearScreen(color); } void GfxRenderer::invertScreen() const { uint8_t* buffer = display.getFrameBuffer(); if (!buffer) { Serial.printf("[%lu] [GFX] !! No framebuffer in invertScreen\n", millis()); return; } for (int i = 0; i < HalDisplay::BUFFER_SIZE; i++) { buffer[i] = ~buffer[i]; } } void GfxRenderer::displayBuffer(const HalDisplay::RefreshMode refreshMode) const { display.displayBuffer(refreshMode, fadingFix); } std::string GfxRenderer::truncatedText(const int fontId, const char* text, const int maxWidth, const EpdFontFamily::Style style) const { if (!text || maxWidth <= 0) return ""; std::string item = text; const char* ellipsis = "..."; int textWidth = getTextWidth(fontId, item.c_str(), style); if (textWidth <= maxWidth) { // Text fits, return as is return item; } while (!item.empty() && getTextWidth(fontId, (item + ellipsis).c_str(), style) >= maxWidth) { utf8RemoveLastChar(item); } return item.empty() ? ellipsis : item + ellipsis; } // Note: Internal driver treats screen in command orientation; this library exposes a logical orientation int GfxRenderer::getScreenWidth() const { switch (orientation) { case Portrait: case PortraitInverted: // 480px wide in portrait logical coordinates return HalDisplay::DISPLAY_HEIGHT; case LandscapeClockwise: case LandscapeCounterClockwise: // 800px wide in landscape logical coordinates return HalDisplay::DISPLAY_WIDTH; } return HalDisplay::DISPLAY_HEIGHT; } int GfxRenderer::getScreenHeight() const { switch (orientation) { case Portrait: case PortraitInverted: // 800px tall in portrait logical coordinates return HalDisplay::DISPLAY_WIDTH; case LandscapeClockwise: case LandscapeCounterClockwise: // 480px tall in landscape logical coordinates return HalDisplay::DISPLAY_HEIGHT; } return HalDisplay::DISPLAY_WIDTH; } int GfxRenderer::getSpaceWidth(const int fontId) const { if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return 0; } return fontMap.at(fontId).getGlyph(' ', EpdFontFamily::REGULAR)->advanceX; } int GfxRenderer::getFontAscenderSize(const int fontId) const { if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return 0; } return fontMap.at(fontId).getData(EpdFontFamily::REGULAR)->ascender; } int GfxRenderer::getLineHeight(const int fontId) const { if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return 0; } return fontMap.at(fontId).getData(EpdFontFamily::REGULAR)->advanceY; } void GfxRenderer::drawButtonHints(const int fontId, const char* btn1, const char* btn2, const char* btn3, const char* btn4) { const Orientation orig_orientation = getOrientation(); setOrientation(Orientation::Portrait); const int pageHeight = getScreenHeight(); constexpr int buttonWidth = 106; constexpr int buttonHeight = 40; constexpr int buttonY = 40; // Distance from bottom constexpr int textYOffset = 7; // Distance from top of button to text baseline constexpr int buttonPositions[] = {25, 130, 245, 350}; const char* labels[] = {btn1, btn2, btn3, btn4}; for (int i = 0; i < 4; i++) { // Only draw if the label is non-empty if (labels[i] != nullptr && labels[i][0] != '\0') { const int x = buttonPositions[i]; fillRect(x, pageHeight - buttonY, buttonWidth, buttonHeight, false); drawRect(x, pageHeight - buttonY, buttonWidth, buttonHeight); const int textWidth = getTextWidth(fontId, labels[i]); const int textX = x + (buttonWidth - 1 - textWidth) / 2; drawText(fontId, textX, pageHeight - buttonY + textYOffset, labels[i]); } } setOrientation(orig_orientation); } void GfxRenderer::drawSideButtonHints(const int fontId, const char* topBtn, const char* bottomBtn) const { const int screenWidth = getScreenWidth(); constexpr int buttonWidth = 40; // Width on screen (height when rotated) constexpr int buttonHeight = 80; // Height on screen (width when rotated) constexpr int buttonX = 5; // Distance from right edge // Position for the button group - buttons share a border so they're adjacent constexpr int topButtonY = 345; // Top button position const char* labels[] = {topBtn, bottomBtn}; // Draw the shared border for both buttons as one unit const int x = screenWidth - buttonX - buttonWidth; // Draw top button outline (3 sides, bottom open) if (topBtn != nullptr && topBtn[0] != '\0') { drawLine(x, topButtonY, x + buttonWidth - 1, topButtonY); // Top drawLine(x, topButtonY, x, topButtonY + buttonHeight - 1); // Left drawLine(x + buttonWidth - 1, topButtonY, x + buttonWidth - 1, topButtonY + buttonHeight - 1); // Right } // Draw shared middle border if ((topBtn != nullptr && topBtn[0] != '\0') || (bottomBtn != nullptr && bottomBtn[0] != '\0')) { drawLine(x, topButtonY + buttonHeight, x + buttonWidth - 1, topButtonY + buttonHeight); // Shared border } // Draw bottom button outline (3 sides, top is shared) if (bottomBtn != nullptr && bottomBtn[0] != '\0') { drawLine(x, topButtonY + buttonHeight, x, topButtonY + 2 * buttonHeight - 1); // Left drawLine(x + buttonWidth - 1, topButtonY + buttonHeight, x + buttonWidth - 1, topButtonY + 2 * buttonHeight - 1); // Right drawLine(x, topButtonY + 2 * buttonHeight - 1, x + buttonWidth - 1, topButtonY + 2 * buttonHeight - 1); // Bottom } // Draw text for each button for (int i = 0; i < 2; i++) { if (labels[i] != nullptr && labels[i][0] != '\0') { const int y = topButtonY + i * buttonHeight; // Draw rotated text centered in the button const int textWidth = getTextWidth(fontId, labels[i]); const int textHeight = getTextHeight(fontId); // Center the rotated text in the button const int textX = x + (buttonWidth - textHeight) / 2; const int textY = y + (buttonHeight + textWidth) / 2; drawTextRotated90CW(fontId, textX, textY, labels[i]); } } } int GfxRenderer::getTextHeight(const int fontId) const { if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return 0; } return fontMap.at(fontId).getData(EpdFontFamily::REGULAR)->ascender; } void GfxRenderer::drawTextRotated90CW(const int fontId, const int x, const int y, const char* text, const bool black, const EpdFontFamily::Style style) const { // Cannot draw a NULL / empty string if (text == nullptr || *text == '\0') { return; } if (fontMap.count(fontId) == 0) { Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId); return; } const auto font = fontMap.at(fontId); // No printable characters if (!font.hasPrintableChars(text, style)) { return; } // For 90° clockwise rotation: // Original (glyphX, glyphY) -> Rotated (glyphY, -glyphX) // Text reads from bottom to top int yPos = y; // Current Y position (decreases as we draw characters) uint32_t cp; while ((cp = utf8NextCodepoint(reinterpret_cast(&text)))) { const EpdGlyph* glyph = font.getGlyph(cp, style); if (!glyph) { glyph = font.getGlyph(REPLACEMENT_GLYPH, style); } if (!glyph) { continue; } const int is2Bit = font.getData(style)->is2Bit; const uint32_t offset = glyph->dataOffset; const uint8_t width = glyph->width; const uint8_t height = glyph->height; const int left = glyph->left; const int top = glyph->top; const uint8_t* bitmap = &font.getData(style)->bitmap[offset]; if (bitmap != nullptr) { for (int glyphY = 0; glyphY < height; glyphY++) { for (int glyphX = 0; glyphX < width; glyphX++) { const int pixelPosition = glyphY * width + glyphX; // 90° clockwise rotation transformation: // screenX = x + (ascender - top + glyphY) // screenY = yPos - (left + glyphX) const int screenX = x + (font.getData(style)->ascender - top + glyphY); const int screenY = yPos - left - glyphX; if (is2Bit) { const uint8_t byte = bitmap[pixelPosition / 4]; const uint8_t bit_index = (3 - pixelPosition % 4) * 2; const uint8_t bmpVal = 3 - (byte >> bit_index) & 0x3; if (renderMode == BW && bmpVal < 3) { drawPixel(screenX, screenY, black); } else if (renderMode == GRAYSCALE_MSB && (bmpVal == 1 || bmpVal == 2)) { drawPixel(screenX, screenY, false); } else if (renderMode == GRAYSCALE_LSB && bmpVal == 1) { drawPixel(screenX, screenY, false); } } else { const uint8_t byte = bitmap[pixelPosition / 8]; const uint8_t bit_index = 7 - (pixelPosition % 8); if ((byte >> bit_index) & 1) { drawPixel(screenX, screenY, black); } } } } } // Move to next character position (going up, so decrease Y) yPos -= glyph->advanceX; } } uint8_t* GfxRenderer::getFrameBuffer() const { return display.getFrameBuffer(); } size_t GfxRenderer::getBufferSize() { return HalDisplay::BUFFER_SIZE; } // unused // void GfxRenderer::grayscaleRevert() const { display.grayscaleRevert(); } void GfxRenderer::copyGrayscaleLsbBuffers() const { display.copyGrayscaleLsbBuffers(display.getFrameBuffer()); } void GfxRenderer::copyGrayscaleMsbBuffers() const { display.copyGrayscaleMsbBuffers(display.getFrameBuffer()); } void GfxRenderer::displayGrayBuffer() const { display.displayGrayBuffer(fadingFix); } void GfxRenderer::freeBwBufferChunks() { for (auto& bwBufferChunk : bwBufferChunks) { if (bwBufferChunk) { free(bwBufferChunk); bwBufferChunk = nullptr; } } } /** * This should be called before grayscale buffers are populated. * A `restoreBwBuffer` call should always follow the grayscale render if this method was called. * Uses chunked allocation to avoid needing 48KB of contiguous memory. * Returns true if buffer was stored successfully, false if allocation failed. */ bool GfxRenderer::storeBwBuffer() { const uint8_t* frameBuffer = display.getFrameBuffer(); if (!frameBuffer) { Serial.printf("[%lu] [GFX] !! No framebuffer in storeBwBuffer\n", millis()); return false; } // Allocate and copy each chunk for (size_t i = 0; i < BW_BUFFER_NUM_CHUNKS; i++) { // Check if any chunks are already allocated if (bwBufferChunks[i]) { Serial.printf("[%lu] [GFX] !! BW buffer chunk %zu already stored - this is likely a bug, freeing chunk\n", millis(), i); free(bwBufferChunks[i]); bwBufferChunks[i] = nullptr; } const size_t offset = i * BW_BUFFER_CHUNK_SIZE; bwBufferChunks[i] = static_cast(malloc(BW_BUFFER_CHUNK_SIZE)); if (!bwBufferChunks[i]) { Serial.printf("[%lu] [GFX] !! Failed to allocate BW buffer chunk %zu (%zu bytes)\n", millis(), i, BW_BUFFER_CHUNK_SIZE); // Free previously allocated chunks freeBwBufferChunks(); return false; } memcpy(bwBufferChunks[i], frameBuffer + offset, BW_BUFFER_CHUNK_SIZE); } Serial.printf("[%lu] [GFX] Stored BW buffer in %zu chunks (%zu bytes each)\n", millis(), BW_BUFFER_NUM_CHUNKS, BW_BUFFER_CHUNK_SIZE); return true; } /** * This can only be called if `storeBwBuffer` was called prior to the grayscale render. * It should be called to restore the BW buffer state after grayscale rendering is complete. * Uses chunked restoration to match chunked storage. */ void GfxRenderer::restoreBwBuffer() { // Check if any all chunks are allocated bool missingChunks = false; for (const auto& bwBufferChunk : bwBufferChunks) { if (!bwBufferChunk) { missingChunks = true; break; } } if (missingChunks) { freeBwBufferChunks(); return; } uint8_t* frameBuffer = display.getFrameBuffer(); if (!frameBuffer) { Serial.printf("[%lu] [GFX] !! No framebuffer in restoreBwBuffer\n", millis()); freeBwBufferChunks(); return; } for (size_t i = 0; i < BW_BUFFER_NUM_CHUNKS; i++) { // Check if chunk is missing if (!bwBufferChunks[i]) { Serial.printf("[%lu] [GFX] !! BW buffer chunks not stored - this is likely a bug\n", millis()); freeBwBufferChunks(); return; } const size_t offset = i * BW_BUFFER_CHUNK_SIZE; memcpy(frameBuffer + offset, bwBufferChunks[i], BW_BUFFER_CHUNK_SIZE); } display.cleanupGrayscaleBuffers(frameBuffer); freeBwBufferChunks(); Serial.printf("[%lu] [GFX] Restored and freed BW buffer chunks\n", millis()); } /** * Cleanup grayscale buffers using the current frame buffer. * Use this when BW buffer was re-rendered instead of stored/restored. */ void GfxRenderer::cleanupGrayscaleWithFrameBuffer() const { uint8_t* frameBuffer = display.getFrameBuffer(); if (frameBuffer) { display.cleanupGrayscaleBuffers(frameBuffer); } } void GfxRenderer::renderChar(const EpdFontFamily& fontFamily, const uint32_t cp, int* x, const int* y, const bool pixelState, const EpdFontFamily::Style style) const { const EpdGlyph* glyph = fontFamily.getGlyph(cp, style); if (!glyph) { glyph = fontFamily.getGlyph(REPLACEMENT_GLYPH, style); } // no glyph? if (!glyph) { Serial.printf("[%lu] [GFX] No glyph for codepoint %d\n", millis(), cp); return; } const int is2Bit = fontFamily.getData(style)->is2Bit; const uint32_t offset = glyph->dataOffset; const uint8_t width = glyph->width; const uint8_t height = glyph->height; const int left = glyph->left; const uint8_t* bitmap = nullptr; bitmap = &fontFamily.getData(style)->bitmap[offset]; if (bitmap != nullptr) { for (int glyphY = 0; glyphY < height; glyphY++) { const int screenY = *y - glyph->top + glyphY; for (int glyphX = 0; glyphX < width; glyphX++) { const int pixelPosition = glyphY * width + glyphX; const int screenX = *x + left + glyphX; if (is2Bit) { const uint8_t byte = bitmap[pixelPosition / 4]; const uint8_t bit_index = (3 - pixelPosition % 4) * 2; // the direct bit from the font is 0 -> white, 1 -> light gray, 2 -> dark gray, 3 -> black // we swap this to better match the way images and screen think about colors: // 0 -> black, 1 -> dark grey, 2 -> light grey, 3 -> white const uint8_t bmpVal = 3 - (byte >> bit_index) & 0x3; if (renderMode == BW && bmpVal < 3) { // Black (also paints over the grays in BW mode) drawPixel(screenX, screenY, pixelState); } else if (renderMode == GRAYSCALE_MSB && (bmpVal == 1 || bmpVal == 2)) { // Light gray (also mark the MSB if it's going to be a dark gray too) // We have to flag pixels in reverse for the gray buffers, as 0 leave alone, 1 update drawPixel(screenX, screenY, false); } else if (renderMode == GRAYSCALE_LSB && bmpVal == 1) { // Dark gray drawPixel(screenX, screenY, false); } } else { const uint8_t byte = bitmap[pixelPosition / 8]; const uint8_t bit_index = 7 - (pixelPosition % 8); if ((byte >> bit_index) & 1) { drawPixel(screenX, screenY, pixelState); } } } } } *x += glyph->advanceX; } void GfxRenderer::getOrientedViewableTRBL(int* outTop, int* outRight, int* outBottom, int* outLeft) const { switch (orientation) { case Portrait: *outTop = VIEWABLE_MARGIN_TOP; *outRight = VIEWABLE_MARGIN_RIGHT; *outBottom = VIEWABLE_MARGIN_BOTTOM; *outLeft = VIEWABLE_MARGIN_LEFT; break; case LandscapeClockwise: *outTop = VIEWABLE_MARGIN_LEFT; *outRight = VIEWABLE_MARGIN_TOP; *outBottom = VIEWABLE_MARGIN_RIGHT; *outLeft = VIEWABLE_MARGIN_BOTTOM; break; case PortraitInverted: *outTop = VIEWABLE_MARGIN_BOTTOM; *outRight = VIEWABLE_MARGIN_LEFT; *outBottom = VIEWABLE_MARGIN_TOP; *outLeft = VIEWABLE_MARGIN_RIGHT; break; case LandscapeCounterClockwise: *outTop = VIEWABLE_MARGIN_RIGHT; *outRight = VIEWABLE_MARGIN_BOTTOM; *outBottom = VIEWABLE_MARGIN_LEFT; *outLeft = VIEWABLE_MARGIN_TOP; break; } }