Xteink-X4-crosspoint-reader/src/activities/reader/XtcReaderActivity.cpp
dangson 140d8749a6
Some checks are pending
CI / build (push) Waiting to run
Support swapping the functionality of the front buttons (#133)
## Summary

**What is the goal of this PR?** 

Adds a setting to swap the front buttons. The default functionality are:
Back/Confirm/Left/Right. When this setting is enabled they become:
Left/Right/Back/Confirm. This makes it more comfortable to use when
holding in your right hand since your thumb can more easily rest on the
next button. The original firmware has a similar setting.

**What changes are included?**

- Add the new setting.
- Create a mapper to dynamically switch the buttons based on the
setting.
- Use mapper on the various activity screens.
- Update the button hints to reflect the swapped buttons.

## Additional Context

Full disclosure: I used Codex CLI to put this PR together, but did
review it to make sure it makes sense.

Also tested on my device:
https://share.cleanshot.com/k76891NY
2025-12-29 14:59:14 +11:00

361 lines
11 KiB
C++

/**
* XtcReaderActivity.cpp
*
* XTC ebook reader activity implementation
* Displays pre-rendered XTC pages on e-ink display
*/
#include "XtcReaderActivity.h"
#include <FsHelpers.h>
#include <GfxRenderer.h>
#include <InputManager.h>
#include "CrossPointSettings.h"
#include "CrossPointState.h"
#include "config.h"
namespace {
constexpr int pagesPerRefresh = 15;
constexpr unsigned long skipPageMs = 700;
constexpr unsigned long goHomeMs = 1000;
} // namespace
void XtcReaderActivity::taskTrampoline(void* param) {
auto* self = static_cast<XtcReaderActivity*>(param);
self->displayTaskLoop();
}
void XtcReaderActivity::onEnter() {
Activity::onEnter();
if (!xtc) {
return;
}
renderingMutex = xSemaphoreCreateMutex();
xtc->setupCacheDir();
// Load saved progress
loadProgress();
// Save current XTC as last opened book
APP_STATE.openEpubPath = xtc->getPath();
APP_STATE.saveToFile();
// Trigger first update
updateRequired = true;
xTaskCreate(&XtcReaderActivity::taskTrampoline, "XtcReaderActivityTask",
4096, // Stack size (smaller than EPUB since no parsing needed)
this, // Parameters
1, // Priority
&displayTaskHandle // Task handle
);
}
void XtcReaderActivity::onExit() {
Activity::onExit();
// Wait until not rendering to delete task
xSemaphoreTake(renderingMutex, portMAX_DELAY);
if (displayTaskHandle) {
vTaskDelete(displayTaskHandle);
displayTaskHandle = nullptr;
}
vSemaphoreDelete(renderingMutex);
renderingMutex = nullptr;
xtc.reset();
}
void XtcReaderActivity::loop() {
// Long press BACK (1s+) goes directly to home
if (mappedInput.isPressed(MappedInputManager::Button::Back) && mappedInput.getHeldTime() >= goHomeMs) {
onGoHome();
return;
}
// Short press BACK goes to file selection
if (mappedInput.wasReleased(MappedInputManager::Button::Back) && mappedInput.getHeldTime() < goHomeMs) {
onGoBack();
return;
}
const bool prevReleased = mappedInput.wasReleased(MappedInputManager::Button::PageBack) ||
mappedInput.wasReleased(MappedInputManager::Button::Left);
const bool nextReleased = mappedInput.wasReleased(MappedInputManager::Button::PageForward) ||
mappedInput.wasReleased(MappedInputManager::Button::Right);
if (!prevReleased && !nextReleased) {
return;
}
// Handle end of book
if (currentPage >= xtc->getPageCount()) {
currentPage = xtc->getPageCount() - 1;
updateRequired = true;
return;
}
const bool skipPages = mappedInput.getHeldTime() > skipPageMs;
const int skipAmount = skipPages ? 10 : 1;
if (prevReleased) {
if (currentPage >= static_cast<uint32_t>(skipAmount)) {
currentPage -= skipAmount;
} else {
currentPage = 0;
}
updateRequired = true;
} else if (nextReleased) {
currentPage += skipAmount;
if (currentPage >= xtc->getPageCount()) {
currentPage = xtc->getPageCount(); // Allow showing "End of book"
}
updateRequired = true;
}
}
void XtcReaderActivity::displayTaskLoop() {
while (true) {
if (updateRequired) {
updateRequired = false;
xSemaphoreTake(renderingMutex, portMAX_DELAY);
renderScreen();
xSemaphoreGive(renderingMutex);
}
vTaskDelay(10 / portTICK_PERIOD_MS);
}
}
void XtcReaderActivity::renderScreen() {
if (!xtc) {
return;
}
// Bounds check
if (currentPage >= xtc->getPageCount()) {
// Show end of book screen
renderer.clearScreen();
renderer.drawCenteredText(UI_FONT_ID, 300, "End of book", true, BOLD);
renderer.displayBuffer();
return;
}
renderPage();
saveProgress();
}
void XtcReaderActivity::renderPage() {
const uint16_t pageWidth = xtc->getPageWidth();
const uint16_t pageHeight = xtc->getPageHeight();
const uint8_t bitDepth = xtc->getBitDepth();
// Calculate buffer size for one page
// XTG (1-bit): Row-major, ((width+7)/8) * height bytes
// XTH (2-bit): Two bit planes, column-major, ((width * height + 7) / 8) * 2 bytes
size_t pageBufferSize;
if (bitDepth == 2) {
pageBufferSize = ((static_cast<size_t>(pageWidth) * pageHeight + 7) / 8) * 2;
} else {
pageBufferSize = ((pageWidth + 7) / 8) * pageHeight;
}
// Allocate page buffer
uint8_t* pageBuffer = static_cast<uint8_t*>(malloc(pageBufferSize));
if (!pageBuffer) {
Serial.printf("[%lu] [XTR] Failed to allocate page buffer (%lu bytes)\n", millis(), pageBufferSize);
renderer.clearScreen();
renderer.drawCenteredText(UI_FONT_ID, 300, "Memory error", true, BOLD);
renderer.displayBuffer();
return;
}
// Load page data
size_t bytesRead = xtc->loadPage(currentPage, pageBuffer, pageBufferSize);
if (bytesRead == 0) {
Serial.printf("[%lu] [XTR] Failed to load page %lu\n", millis(), currentPage);
free(pageBuffer);
renderer.clearScreen();
renderer.drawCenteredText(UI_FONT_ID, 300, "Page load error", true, BOLD);
renderer.displayBuffer();
return;
}
// Clear screen first
renderer.clearScreen();
// Copy page bitmap using GfxRenderer's drawPixel
// XTC/XTCH pages are pre-rendered with status bar included, so render full page
const uint16_t maxSrcY = pageHeight;
if (bitDepth == 2) {
// XTH 2-bit mode: Two bit planes, column-major order
// - Columns scanned right to left (x = width-1 down to 0)
// - 8 vertical pixels per byte (MSB = topmost pixel in group)
// - First plane: Bit1, Second plane: Bit2
// - Pixel value = (bit1 << 1) | bit2
// - Grayscale: 0=White, 1=Dark Grey, 2=Light Grey, 3=Black
const size_t planeSize = (static_cast<size_t>(pageWidth) * pageHeight + 7) / 8;
const uint8_t* plane1 = pageBuffer; // Bit1 plane
const uint8_t* plane2 = pageBuffer + planeSize; // Bit2 plane
const size_t colBytes = (pageHeight + 7) / 8; // Bytes per column (100 for 800 height)
// Lambda to get pixel value at (x, y)
auto getPixelValue = [&](uint16_t x, uint16_t y) -> uint8_t {
const size_t colIndex = pageWidth - 1 - x;
const size_t byteInCol = y / 8;
const size_t bitInByte = 7 - (y % 8);
const size_t byteOffset = colIndex * colBytes + byteInCol;
const uint8_t bit1 = (plane1[byteOffset] >> bitInByte) & 1;
const uint8_t bit2 = (plane2[byteOffset] >> bitInByte) & 1;
return (bit1 << 1) | bit2;
};
// Optimized grayscale rendering without storeBwBuffer (saves 48KB peak memory)
// Flow: BW display → LSB/MSB passes → grayscale display → re-render BW for next frame
// Count pixel distribution for debugging
uint32_t pixelCounts[4] = {0, 0, 0, 0};
for (uint16_t y = 0; y < pageHeight; y++) {
for (uint16_t x = 0; x < pageWidth; x++) {
pixelCounts[getPixelValue(x, y)]++;
}
}
Serial.printf("[%lu] [XTR] Pixel distribution: White=%lu, DarkGrey=%lu, LightGrey=%lu, Black=%lu\n", millis(),
pixelCounts[0], pixelCounts[1], pixelCounts[2], pixelCounts[3]);
// Pass 1: BW buffer - draw all non-white pixels as black
for (uint16_t y = 0; y < pageHeight; y++) {
for (uint16_t x = 0; x < pageWidth; x++) {
if (getPixelValue(x, y) >= 1) {
renderer.drawPixel(x, y, true);
}
}
}
// Display BW with conditional refresh based on pagesUntilFullRefresh
if (pagesUntilFullRefresh <= 1) {
renderer.displayBuffer(EInkDisplay::HALF_REFRESH);
pagesUntilFullRefresh = pagesPerRefresh;
} else {
renderer.displayBuffer();
pagesUntilFullRefresh--;
}
// Pass 2: LSB buffer - mark DARK gray only (XTH value 1)
// In LUT: 0 bit = apply gray effect, 1 bit = untouched
renderer.clearScreen(0x00);
for (uint16_t y = 0; y < pageHeight; y++) {
for (uint16_t x = 0; x < pageWidth; x++) {
if (getPixelValue(x, y) == 1) { // Dark grey only
renderer.drawPixel(x, y, false);
}
}
}
renderer.copyGrayscaleLsbBuffers();
// Pass 3: MSB buffer - mark LIGHT AND DARK gray (XTH value 1 or 2)
// In LUT: 0 bit = apply gray effect, 1 bit = untouched
renderer.clearScreen(0x00);
for (uint16_t y = 0; y < pageHeight; y++) {
for (uint16_t x = 0; x < pageWidth; x++) {
const uint8_t pv = getPixelValue(x, y);
if (pv == 1 || pv == 2) { // Dark grey or Light grey
renderer.drawPixel(x, y, false);
}
}
}
renderer.copyGrayscaleMsbBuffers();
// Display grayscale overlay
renderer.displayGrayBuffer();
// Pass 4: Re-render BW to framebuffer (restore for next frame, instead of restoreBwBuffer)
renderer.clearScreen();
for (uint16_t y = 0; y < pageHeight; y++) {
for (uint16_t x = 0; x < pageWidth; x++) {
if (getPixelValue(x, y) >= 1) {
renderer.drawPixel(x, y, true);
}
}
}
// Cleanup grayscale buffers with current frame buffer
renderer.cleanupGrayscaleWithFrameBuffer();
free(pageBuffer);
Serial.printf("[%lu] [XTR] Rendered page %lu/%lu (2-bit grayscale)\n", millis(), currentPage + 1,
xtc->getPageCount());
return;
} else {
// 1-bit mode: 8 pixels per byte, MSB first
const size_t srcRowBytes = (pageWidth + 7) / 8; // 60 bytes for 480 width
for (uint16_t srcY = 0; srcY < maxSrcY; srcY++) {
const size_t srcRowStart = srcY * srcRowBytes;
for (uint16_t srcX = 0; srcX < pageWidth; srcX++) {
// Read source pixel (MSB first, bit 7 = leftmost pixel)
const size_t srcByte = srcRowStart + srcX / 8;
const size_t srcBit = 7 - (srcX % 8);
const bool isBlack = !((pageBuffer[srcByte] >> srcBit) & 1); // XTC: 0 = black, 1 = white
if (isBlack) {
renderer.drawPixel(srcX, srcY, true);
}
}
}
}
// White pixels are already cleared by clearScreen()
free(pageBuffer);
// XTC pages already have status bar pre-rendered, no need to add our own
// Display with appropriate refresh
if (pagesUntilFullRefresh <= 1) {
renderer.displayBuffer(EInkDisplay::HALF_REFRESH);
pagesUntilFullRefresh = pagesPerRefresh;
} else {
renderer.displayBuffer();
pagesUntilFullRefresh--;
}
Serial.printf("[%lu] [XTR] Rendered page %lu/%lu (%u-bit)\n", millis(), currentPage + 1, xtc->getPageCount(),
bitDepth);
}
void XtcReaderActivity::saveProgress() const {
File f;
if (FsHelpers::openFileForWrite("XTR", xtc->getCachePath() + "/progress.bin", f)) {
uint8_t data[4];
data[0] = currentPage & 0xFF;
data[1] = (currentPage >> 8) & 0xFF;
data[2] = (currentPage >> 16) & 0xFF;
data[3] = (currentPage >> 24) & 0xFF;
f.write(data, 4);
f.close();
}
}
void XtcReaderActivity::loadProgress() {
File f;
if (FsHelpers::openFileForRead("XTR", xtc->getCachePath() + "/progress.bin", f)) {
uint8_t data[4];
if (f.read(data, 4) == 4) {
currentPage = data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
Serial.printf("[%lu] [XTR] Loaded progress: page %lu\n", millis(), currentPage);
// Validate page number
if (currentPage >= xtc->getPageCount()) {
currentPage = 0;
}
}
f.close();
}
}