Xteink-X4-crosspoint-reader/lib/GfxRenderer/GfxRenderer.cpp

839 lines
28 KiB
C++

#include "GfxRenderer.h"
#include <Utf8.h>
#include "Group5/g5dec.inl"
// TODO: Build this into the format
#define FONT_SCALE 2
namespace {
// Number of set bits from 0->15
uint8_t bitCount[] = {
0, // 0b0000,
1, // 0b0001,
1, // 0b0010,
2, // 0b0011,
1, // 0b0100,
2, // 0b0101,
2, // 0b0110,
3, // 0b0111,
1, // 0b1000,
2, // 0b1001,
2, // 0b1010,
3, // 0b1011,
2, // 0b1100,
3, // 0b1101,
3, // 0b1110,
4, // 0b1111,
};
} // namespace
void GfxRenderer::insertFont(const int fontId, CrossPointFont font) { fontMap.insert({fontId, font}); }
void GfxRenderer::rotateCoordinates(const int x, const int y, int* rotatedX, int* rotatedY) const {
switch (orientation) {
case Portrait: {
// Logical portrait (480x800) → panel (800x480)
// Rotation: 90 degrees clockwise
*rotatedX = y;
*rotatedY = HalDisplay::DISPLAY_HEIGHT - 1 - x;
break;
}
case LandscapeClockwise: {
// Logical landscape (800x480) rotated 180 degrees (swap top/bottom and left/right)
*rotatedX = HalDisplay::DISPLAY_WIDTH - 1 - x;
*rotatedY = HalDisplay::DISPLAY_HEIGHT - 1 - y;
break;
}
case PortraitInverted: {
// Logical portrait (480x800) → panel (800x480)
// Rotation: 90 degrees counter-clockwise
*rotatedX = HalDisplay::DISPLAY_WIDTH - 1 - y;
*rotatedY = x;
break;
}
case LandscapeCounterClockwise: {
// Logical landscape (800x480) aligned with panel orientation
*rotatedX = x;
*rotatedY = y;
break;
}
}
}
void GfxRenderer::drawPixel(const int x, const int y, const bool state) const {
uint8_t* frameBuffer = display.getFrameBuffer();
// Early return if no framebuffer is set
if (!frameBuffer) {
Serial.printf("[%lu] [GFX] !! No framebuffer\n", millis());
return;
}
int rotatedX = 0;
int rotatedY = 0;
rotateCoordinates(x, y, &rotatedX, &rotatedY);
// Bounds checking against physical panel dimensions
if (rotatedX < 0 || rotatedX >= HalDisplay::DISPLAY_WIDTH || rotatedY < 0 || rotatedY >= HalDisplay::DISPLAY_HEIGHT) {
Serial.printf("[%lu] [GFX] !! Outside range (%d, %d) -> (%d, %d)\n", millis(), x, y, rotatedX, rotatedY);
return;
}
// Calculate byte position and bit position
const uint16_t byteIndex = rotatedY * HalDisplay::DISPLAY_WIDTH_BYTES + (rotatedX / 8);
const uint8_t bitPosition = 7 - (rotatedX % 8); // MSB first
if (state) {
frameBuffer[byteIndex] &= ~(1 << bitPosition); // Clear bit
} else {
frameBuffer[byteIndex] |= 1 << bitPosition; // Set bit
}
}
int GfxRenderer::getTextWidth(const int fontId, const char* text, const CrossPointFont::Style style) const {
if (fontMap.count(fontId) == 0) {
Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId);
return 0;
}
int w = 0, h = 0;
fontMap.at(fontId).getTextDimensions(text, style, &w, &h);
return w;
}
void GfxRenderer::drawCenteredText(const int fontId, const int y, const char* text, const bool black,
const CrossPointFont::Style style) {
const int x = (getScreenWidth() - getTextWidth(fontId, text, style)) / 2;
drawText(fontId, x, y, text, black, style);
}
void GfxRenderer::drawText(const int fontId, const int x, const int y, const char* text, const bool black,
const CrossPointFont::Style style) {
// cannot draw a NULL / empty string
if (text == nullptr || *text == '\0') {
return;
}
if (fontMap.count(fontId) == 0) {
Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId);
return;
}
const auto cpFont = fontMap.at(fontId);
// TODO: REPLACE FONT_SCALE
int xpos = x;
const int yPos = y + cpFont.data.header.ascender / FONT_SCALE;
uint32_t cp;
while ((cp = utf8NextCodepoint(reinterpret_cast<const uint8_t**>(&text)))) {
renderChar(cpFont, cp, &xpos, yPos, black, style);
}
}
void GfxRenderer::drawLine(int x1, int y1, int x2, int y2, const bool state) const {
if (x1 == x2) {
if (y2 < y1) {
std::swap(y1, y2);
}
for (int y = y1; y <= y2; y++) {
drawPixel(x1, y, state);
}
} else if (y1 == y2) {
if (x2 < x1) {
std::swap(x1, x2);
}
for (int x = x1; x <= x2; x++) {
drawPixel(x, y1, state);
}
} else {
// TODO: Implement
Serial.printf("[%lu] [GFX] Line drawing not supported\n", millis());
}
}
void GfxRenderer::drawRect(const int x, const int y, const int width, const int height, const bool state) const {
drawLine(x, y, x + width - 1, y, state);
drawLine(x + width - 1, y, x + width - 1, y + height - 1, state);
drawLine(x + width - 1, y + height - 1, x, y + height - 1, state);
drawLine(x, y, x, y + height - 1, state);
}
void GfxRenderer::fillRect(const int x, const int y, const int width, const int height, const bool state) const {
for (int fillY = y; fillY < y + height; fillY++) {
drawLine(x, fillY, x + width - 1, fillY, state);
}
}
void GfxRenderer::drawImage(const uint8_t bitmap[], const int x, const int y, const int width, const int height) const {
int rotatedX = 0;
int rotatedY = 0;
rotateCoordinates(x, y, &rotatedX, &rotatedY);
// Rotate origin corner
switch (orientation) {
case Portrait:
rotatedY = rotatedY - height;
break;
case PortraitInverted:
rotatedX = rotatedX - width;
break;
case LandscapeClockwise:
rotatedY = rotatedY - height;
rotatedX = rotatedX - width;
break;
case LandscapeCounterClockwise:
break;
}
// TODO: Rotate bits
display.drawImage(bitmap, rotatedX, rotatedY, width, height);
}
void GfxRenderer::drawBitmap(const Bitmap& bitmap, const int x, const int y, const int maxWidth, const int maxHeight,
const float cropX, const float cropY) const {
// For 1-bit bitmaps, use optimized 1-bit rendering path (no crop support for 1-bit)
if (bitmap.is1Bit() && cropX == 0.0f && cropY == 0.0f) {
drawBitmap1Bit(bitmap, x, y, maxWidth, maxHeight);
return;
}
float scale = 1.0f;
bool isScaled = false;
int cropPixX = std::floor(bitmap.getWidth() * cropX / 2.0f);
int cropPixY = std::floor(bitmap.getHeight() * cropY / 2.0f);
Serial.printf("[%lu] [GFX] Cropping %dx%d by %dx%d pix, is %s\n", millis(), bitmap.getWidth(), bitmap.getHeight(),
cropPixX, cropPixY, bitmap.isTopDown() ? "top-down" : "bottom-up");
if (maxWidth > 0 && (1.0f - cropX) * bitmap.getWidth() > maxWidth) {
scale = static_cast<float>(maxWidth) / static_cast<float>((1.0f - cropX) * bitmap.getWidth());
isScaled = true;
}
if (maxHeight > 0 && (1.0f - cropY) * bitmap.getHeight() > maxHeight) {
scale = std::min(scale, static_cast<float>(maxHeight) / static_cast<float>((1.0f - cropY) * bitmap.getHeight()));
isScaled = true;
}
Serial.printf("[%lu] [GFX] Scaling by %f - %s\n", millis(), scale, isScaled ? "scaled" : "not scaled");
// Calculate output row size (2 bits per pixel, packed into bytes)
// IMPORTANT: Use int, not uint8_t, to avoid overflow for images > 1020 pixels wide
const int outputRowSize = (bitmap.getWidth() + 3) / 4;
auto* outputRow = static_cast<uint8_t*>(malloc(outputRowSize));
auto* rowBytes = static_cast<uint8_t*>(malloc(bitmap.getRowBytes()));
if (!outputRow || !rowBytes) {
Serial.printf("[%lu] [GFX] !! Failed to allocate BMP row buffers\n", millis());
free(outputRow);
free(rowBytes);
return;
}
for (int bmpY = 0; bmpY < (bitmap.getHeight() - cropPixY); bmpY++) {
// The BMP's (0, 0) is the bottom-left corner (if the height is positive, top-left if negative).
// Screen's (0, 0) is the top-left corner.
int screenY = -cropPixY + (bitmap.isTopDown() ? bmpY : bitmap.getHeight() - 1 - bmpY);
if (isScaled) {
screenY = std::floor(screenY * scale);
}
screenY += y; // the offset should not be scaled
if (screenY >= getScreenHeight()) {
break;
}
if (bitmap.readNextRow(outputRow, rowBytes) != BmpReaderError::Ok) {
Serial.printf("[%lu] [GFX] Failed to read row %d from bitmap\n", millis(), bmpY);
free(outputRow);
free(rowBytes);
return;
}
if (screenY < 0) {
continue;
}
if (bmpY < cropPixY) {
// Skip the row if it's outside the crop area
continue;
}
for (int bmpX = cropPixX; bmpX < bitmap.getWidth() - cropPixX; bmpX++) {
int screenX = bmpX - cropPixX;
if (isScaled) {
screenX = std::floor(screenX * scale);
}
screenX += x; // the offset should not be scaled
if (screenX >= getScreenWidth()) {
break;
}
if (screenX < 0) {
continue;
}
const uint8_t val = outputRow[bmpX / 4] >> (6 - ((bmpX * 2) % 8)) & 0x3;
if (renderMode == BW && val < 3) {
drawPixel(screenX, screenY);
} else if (renderMode == GRAYSCALE_MSB && (val == 1 || val == 2)) {
drawPixel(screenX, screenY, false);
} else if (renderMode == GRAYSCALE_LSB && val == 1) {
drawPixel(screenX, screenY, false);
}
}
}
free(outputRow);
free(rowBytes);
}
void GfxRenderer::drawBitmap1Bit(const Bitmap& bitmap, const int x, const int y, const int maxWidth,
const int maxHeight) const {
float scale = 1.0f;
bool isScaled = false;
if (maxWidth > 0 && bitmap.getWidth() > maxWidth) {
scale = static_cast<float>(maxWidth) / static_cast<float>(bitmap.getWidth());
isScaled = true;
}
if (maxHeight > 0 && bitmap.getHeight() > maxHeight) {
scale = std::min(scale, static_cast<float>(maxHeight) / static_cast<float>(bitmap.getHeight()));
isScaled = true;
}
// For 1-bit BMP, output is still 2-bit packed (for consistency with readNextRow)
const int outputRowSize = (bitmap.getWidth() + 3) / 4;
auto* outputRow = static_cast<uint8_t*>(malloc(outputRowSize));
auto* rowBytes = static_cast<uint8_t*>(malloc(bitmap.getRowBytes()));
if (!outputRow || !rowBytes) {
Serial.printf("[%lu] [GFX] !! Failed to allocate 1-bit BMP row buffers\n", millis());
free(outputRow);
free(rowBytes);
return;
}
for (int bmpY = 0; bmpY < bitmap.getHeight(); bmpY++) {
// Read rows sequentially using readNextRow
if (bitmap.readNextRow(outputRow, rowBytes) != BmpReaderError::Ok) {
Serial.printf("[%lu] [GFX] Failed to read row %d from 1-bit bitmap\n", millis(), bmpY);
free(outputRow);
free(rowBytes);
return;
}
// Calculate screen Y based on whether BMP is top-down or bottom-up
const int bmpYOffset = bitmap.isTopDown() ? bmpY : bitmap.getHeight() - 1 - bmpY;
int screenY = y + (isScaled ? static_cast<int>(std::floor(bmpYOffset * scale)) : bmpYOffset);
if (screenY >= getScreenHeight()) {
continue; // Continue reading to keep row counter in sync
}
if (screenY < 0) {
continue;
}
for (int bmpX = 0; bmpX < bitmap.getWidth(); bmpX++) {
int screenX = x + (isScaled ? static_cast<int>(std::floor(bmpX * scale)) : bmpX);
if (screenX >= getScreenWidth()) {
break;
}
if (screenX < 0) {
continue;
}
// Get 2-bit value (result of readNextRow quantization)
const uint8_t val = outputRow[bmpX / 4] >> (6 - ((bmpX * 2) % 8)) & 0x3;
// For 1-bit source: 0 or 1 -> map to black (0,1,2) or white (3)
// val < 3 means black pixel (draw it)
if (val < 3) {
drawPixel(screenX, screenY, true);
}
// White pixels (val == 3) are not drawn (leave background)
}
}
free(outputRow);
free(rowBytes);
}
void GfxRenderer::fillPolygon(const int* xPoints, const int* yPoints, int numPoints, bool state) const {
if (numPoints < 3) return;
// Find bounding box
int minY = yPoints[0], maxY = yPoints[0];
for (int i = 1; i < numPoints; i++) {
if (yPoints[i] < minY) minY = yPoints[i];
if (yPoints[i] > maxY) maxY = yPoints[i];
}
// Clip to screen
if (minY < 0) minY = 0;
if (maxY >= getScreenHeight()) maxY = getScreenHeight() - 1;
// Allocate node buffer for scanline algorithm
auto* nodeX = static_cast<int*>(malloc(numPoints * sizeof(int)));
if (!nodeX) {
Serial.printf("[%lu] [GFX] !! Failed to allocate polygon node buffer\n", millis());
return;
}
// Scanline fill algorithm
for (int scanY = minY; scanY <= maxY; scanY++) {
int nodes = 0;
// Find all intersection points with edges
int j = numPoints - 1;
for (int i = 0; i < numPoints; i++) {
if ((yPoints[i] < scanY && yPoints[j] >= scanY) || (yPoints[j] < scanY && yPoints[i] >= scanY)) {
// Calculate X intersection using fixed-point to avoid float
int dy = yPoints[j] - yPoints[i];
if (dy != 0) {
nodeX[nodes++] = xPoints[i] + (scanY - yPoints[i]) * (xPoints[j] - xPoints[i]) / dy;
}
}
j = i;
}
// Sort nodes by X (simple bubble sort, numPoints is small)
for (int i = 0; i < nodes - 1; i++) {
for (int k = i + 1; k < nodes; k++) {
if (nodeX[i] > nodeX[k]) {
int temp = nodeX[i];
nodeX[i] = nodeX[k];
nodeX[k] = temp;
}
}
}
// Fill between pairs of nodes
for (int i = 0; i < nodes - 1; i += 2) {
int startX = nodeX[i];
int endX = nodeX[i + 1];
// Clip to screen
if (startX < 0) startX = 0;
if (endX >= getScreenWidth()) endX = getScreenWidth() - 1;
// Draw horizontal line
for (int x = startX; x <= endX; x++) {
drawPixel(x, scanY, state);
}
}
}
free(nodeX);
}
void GfxRenderer::clearScreen(const uint8_t color) const { display.clearScreen(color); }
void GfxRenderer::invertScreen() const {
uint8_t* buffer = display.getFrameBuffer();
if (!buffer) {
Serial.printf("[%lu] [GFX] !! No framebuffer in invertScreen\n", millis());
return;
}
for (int i = 0; i < HalDisplay::BUFFER_SIZE; i++) {
buffer[i] = ~buffer[i];
}
}
void GfxRenderer::displayBuffer(const HalDisplay::RefreshMode refreshMode) const { display.displayBuffer(refreshMode); }
std::string GfxRenderer::truncatedText(const int fontId, const char* text, const int maxWidth,
const CrossPointFont::Style style) const {
std::string item = text;
int itemWidth = getTextWidth(fontId, item.c_str(), style);
while (itemWidth > maxWidth && item.length() > 8) {
item.replace(item.length() - 5, 5, "...");
itemWidth = getTextWidth(fontId, item.c_str(), style);
}
return item;
}
// Note: Internal driver treats screen in command orientation; this library exposes a logical orientation
int GfxRenderer::getScreenWidth() const {
switch (orientation) {
case Portrait:
case PortraitInverted:
// 480px wide in portrait logical coordinates
return HalDisplay::DISPLAY_HEIGHT;
case LandscapeClockwise:
case LandscapeCounterClockwise:
// 800px wide in landscape logical coordinates
return HalDisplay::DISPLAY_WIDTH;
}
return HalDisplay::DISPLAY_HEIGHT;
}
int GfxRenderer::getScreenHeight() const {
switch (orientation) {
case Portrait:
case PortraitInverted:
// 800px tall in portrait logical coordinates
return HalDisplay::DISPLAY_WIDTH;
case LandscapeClockwise:
case LandscapeCounterClockwise:
// 480px tall in landscape logical coordinates
return HalDisplay::DISPLAY_HEIGHT;
}
return HalDisplay::DISPLAY_WIDTH;
}
int GfxRenderer::getSpaceWidth(const int fontId) const {
if (fontMap.count(fontId) == 0) {
Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId);
return 0;
}
return fontMap.at(fontId).getGlyph(' ', CrossPointFont::Style::REGULAR)->xAdvance / FONT_SCALE;
}
int GfxRenderer::getFontAscenderSize(const int fontId) const {
if (fontMap.count(fontId) == 0) {
Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId);
return 0;
}
return fontMap.at(fontId).data.header.ascender / FONT_SCALE;
}
int GfxRenderer::getLineHeight(const int fontId) const {
if (fontMap.count(fontId) == 0) {
Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId);
return 0;
}
return fontMap.at(fontId).data.header.height / FONT_SCALE;
}
void GfxRenderer::drawButtonHints(const int fontId, const char* btn1, const char* btn2, const char* btn3,
const char* btn4) {
const Orientation orig_orientation = getOrientation();
setOrientation(Orientation::Portrait);
const int pageHeight = getScreenHeight();
constexpr int buttonWidth = 106;
constexpr int buttonHeight = 40;
constexpr int buttonY = 40; // Distance from bottom
constexpr int textYOffset = 7; // Distance from top of button to text baseline
constexpr int buttonPositions[] = {25, 130, 245, 350};
const char* labels[] = {btn1, btn2, btn3, btn4};
for (int i = 0; i < 4; i++) {
// Only draw if the label is non-empty
if (labels[i] != nullptr && labels[i][0] != '\0') {
const int x = buttonPositions[i];
fillRect(x, pageHeight - buttonY, buttonWidth, buttonHeight, false);
drawRect(x, pageHeight - buttonY, buttonWidth, buttonHeight);
const int textWidth = getTextWidth(fontId, labels[i]);
const int textX = x + (buttonWidth - 1 - textWidth) / 2;
drawText(fontId, textX, pageHeight - buttonY + textYOffset, labels[i]);
}
}
setOrientation(orig_orientation);
}
void GfxRenderer::drawSideButtonHints(const int fontId, const char* topBtn, const char* bottomBtn) {
const int screenWidth = getScreenWidth();
constexpr int buttonWidth = 40; // Width on screen (height when rotated)
constexpr int buttonHeight = 80; // Height on screen (width when rotated)
constexpr int buttonX = 5; // Distance from right edge
// Position for the button group - buttons share a border so they're adjacent
constexpr int topButtonY = 345; // Top button position
const char* labels[] = {topBtn, bottomBtn};
// Draw the shared border for both buttons as one unit
const int x = screenWidth - buttonX - buttonWidth;
// Draw top button outline (3 sides, bottom open)
if (topBtn != nullptr && topBtn[0] != '\0') {
drawLine(x, topButtonY, x + buttonWidth - 1, topButtonY); // Top
drawLine(x, topButtonY, x, topButtonY + buttonHeight - 1); // Left
drawLine(x + buttonWidth - 1, topButtonY, x + buttonWidth - 1, topButtonY + buttonHeight - 1); // Right
}
// Draw shared middle border
if ((topBtn != nullptr && topBtn[0] != '\0') || (bottomBtn != nullptr && bottomBtn[0] != '\0')) {
drawLine(x, topButtonY + buttonHeight, x + buttonWidth - 1, topButtonY + buttonHeight); // Shared border
}
// Draw bottom button outline (3 sides, top is shared)
if (bottomBtn != nullptr && bottomBtn[0] != '\0') {
drawLine(x, topButtonY + buttonHeight, x, topButtonY + 2 * buttonHeight - 1); // Left
drawLine(x + buttonWidth - 1, topButtonY + buttonHeight, x + buttonWidth - 1,
topButtonY + 2 * buttonHeight - 1); // Right
drawLine(x, topButtonY + 2 * buttonHeight - 1, x + buttonWidth - 1, topButtonY + 2 * buttonHeight - 1); // Bottom
}
// Draw text for each button
for (int i = 0; i < 2; i++) {
if (labels[i] != nullptr && labels[i][0] != '\0') {
const int y = topButtonY + i * buttonHeight;
// Draw rotated text centered in the button
const int textWidth = getTextWidth(fontId, labels[i]);
const int textHeight = getTextHeight(fontId);
// Center the rotated text in the button
const int textX = x + (buttonWidth - textHeight) / 2;
const int textY = y + (buttonHeight + textWidth) / 2;
drawTextRotated90CW(fontId, textX, textY, labels[i]);
}
}
}
int GfxRenderer::getTextHeight(const int fontId) const {
if (fontMap.count(fontId) == 0) {
Serial.printf("[%lu] [GFX] Font %d not found\n", millis(), fontId);
return 0;
}
return fontMap.at(fontId).data.header.ascender / FONT_SCALE;
}
void GfxRenderer::drawTextRotated90CW(const int fontId, const int x, const int y, const char* text, const bool black,
const CrossPointFont::Style style) {
// Stubbed
// TODO: Set orientation, draw text, set orientation back
}
uint8_t* GfxRenderer::getFrameBuffer() const { return display.getFrameBuffer(); }
size_t GfxRenderer::getBufferSize() { return HalDisplay::BUFFER_SIZE; }
void GfxRenderer::copyGrayscaleLsbBuffers() const { display.copyGrayscaleLsbBuffers(display.getFrameBuffer()); }
void GfxRenderer::copyGrayscaleMsbBuffers() const { display.copyGrayscaleMsbBuffers(display.getFrameBuffer()); }
void GfxRenderer::displayGrayBuffer() const { display.displayGrayBuffer(); }
void GfxRenderer::freeBwBufferChunks() {
for (auto& bwBufferChunk : bwBufferChunks) {
if (bwBufferChunk) {
free(bwBufferChunk);
bwBufferChunk = nullptr;
}
}
}
/**
* This should be called before grayscale buffers are populated.
* A `restoreBwBuffer` call should always follow the grayscale render if this method was called.
* Uses chunked allocation to avoid needing 48KB of contiguous memory.
* Returns true if buffer was stored successfully, false if allocation failed.
*/
bool GfxRenderer::storeBwBuffer() {
const uint8_t* frameBuffer = display.getFrameBuffer();
if (!frameBuffer) {
Serial.printf("[%lu] [GFX] !! No framebuffer in storeBwBuffer\n", millis());
return false;
}
// Allocate and copy each chunk
for (size_t i = 0; i < BW_BUFFER_NUM_CHUNKS; i++) {
// Check if any chunks are already allocated
if (bwBufferChunks[i]) {
Serial.printf("[%lu] [GFX] !! BW buffer chunk %zu already stored - this is likely a bug, freeing chunk\n",
millis(), i);
free(bwBufferChunks[i]);
bwBufferChunks[i] = nullptr;
}
const size_t offset = i * BW_BUFFER_CHUNK_SIZE;
bwBufferChunks[i] = static_cast<uint8_t*>(malloc(BW_BUFFER_CHUNK_SIZE));
if (!bwBufferChunks[i]) {
Serial.printf("[%lu] [GFX] !! Failed to allocate BW buffer chunk %zu (%zu bytes)\n", millis(), i,
BW_BUFFER_CHUNK_SIZE);
// Free previously allocated chunks
freeBwBufferChunks();
return false;
}
memcpy(bwBufferChunks[i], frameBuffer + offset, BW_BUFFER_CHUNK_SIZE);
}
Serial.printf("[%lu] [GFX] Stored BW buffer in %zu chunks (%zu bytes each)\n", millis(), BW_BUFFER_NUM_CHUNKS,
BW_BUFFER_CHUNK_SIZE);
return true;
}
/**
* This can only be called if `storeBwBuffer` was called prior to the grayscale render.
* It should be called to restore the BW buffer state after grayscale rendering is complete.
* Uses chunked restoration to match chunked storage.
*/
void GfxRenderer::restoreBwBuffer() {
// Check if any all chunks are allocated
bool missingChunks = false;
for (const auto& bwBufferChunk : bwBufferChunks) {
if (!bwBufferChunk) {
missingChunks = true;
break;
}
}
if (missingChunks) {
freeBwBufferChunks();
return;
}
uint8_t* frameBuffer = display.getFrameBuffer();
if (!frameBuffer) {
Serial.printf("[%lu] [GFX] !! No framebuffer in restoreBwBuffer\n", millis());
freeBwBufferChunks();
return;
}
for (size_t i = 0; i < BW_BUFFER_NUM_CHUNKS; i++) {
// Check if chunk is missing
if (!bwBufferChunks[i]) {
Serial.printf("[%lu] [GFX] !! BW buffer chunks not stored - this is likely a bug\n", millis());
freeBwBufferChunks();
return;
}
const size_t offset = i * BW_BUFFER_CHUNK_SIZE;
memcpy(frameBuffer + offset, bwBufferChunks[i], BW_BUFFER_CHUNK_SIZE);
}
display.cleanupGrayscaleBuffers(frameBuffer);
freeBwBufferChunks();
Serial.printf("[%lu] [GFX] Restored and freed BW buffer chunks\n", millis());
}
/**
* Cleanup grayscale buffers using the current frame buffer.
* Use this when BW buffer was re-rendered instead of stored/restored.
*/
void GfxRenderer::cleanupGrayscaleWithFrameBuffer() const {
const uint8_t* frameBuffer = display.getFrameBuffer();
if (frameBuffer) {
display.cleanupGrayscaleBuffers(frameBuffer);
}
}
void GfxRenderer::renderChar(const CrossPointFont& cpFont, const uint32_t cp, int* x, const int y,
const bool pixelState, const CrossPointFont::Style style) {
int rc, end_y, dx, dy, ty, tw;
uint8_t* s;
const CrossPointFontGlyph* pGlyph = cpFont.getGlyph(cp, style);
if (!pGlyph) {
pGlyph = cpFont.getGlyph(REPLACEMENT_GLYPH, style);
}
int w = pGlyph->width;
int h = pGlyph->height;
uint32_t bitmapOffet = pGlyph->bitmapOffset;
uint32_t xAdvance = pGlyph->xAdvance / FONT_SCALE;
int16_t xOffset = pGlyph->xOffset / FONT_SCALE;
int16_t yOffset = pGlyph->yOffset / FONT_SCALE;
// skip if drawing a space
if (w <= 1) {
*x += xAdvance;
return;
}
s = cpFont.data.bitmap + bitmapOffet;
dx = *x + xOffset;
dy = y - yOffset;
end_y = dy + h / FONT_SCALE;
ty = pGlyph[1].bitmapOffset - bitmapOffet;
if (ty < 0 || ty > 4096) {
Serial.printf("[%lu] [GFX] Invalid glyph compressed size: %d\n", millis(), ty);
return;
}
rc = g5_decode_init(&g5dec, w, h, s, ty);
if (rc != G5_SUCCESS) {
return; // corrupt data?
}
tw = w / FONT_SCALE;
static_assert(FONT_SCALE == 2, "All this code depends on FONT_SCALE being 2");
for (ty = dy; ty < end_y; ty++) {
g5_decode_line(&g5dec, u8Cache);
s = u8Cache;
uint8_t u8 = *s++;
g5_decode_line(&g5dec, u8Cache2);
uint8_t* s2 = u8Cache2;
uint8_t u82 = *s2++;
uint8_t u8Count = 8;
if (ty >= 0) {
uint8_t bmpVal;
for (int tx = dx; tx < dx + tw; tx++) {
const uint8_t blkCnt = bitCount[(u8 & 0xC0 | (u82 & 0xC0) >> 2) >> 4];
u8 <<= FONT_SCALE;
u82 <<= FONT_SCALE;
u8Count -= FONT_SCALE;
// 0 -> black, 1 -> dark grey, 2 -> light grey, 3 -> white
// We're mapping from 0 = white to 4 = black, from 5 states to 4 states
if (blkCnt == 4)
bmpVal = 0;
else if (blkCnt == 3 || blkCnt == 2)
bmpVal = 1;
else if (blkCnt == 1)
bmpVal = 2;
else
bmpVal = 3;
if (renderMode == BW && bmpVal < 3) {
// Black (also paints over the grays in BW mode)
drawPixel(tx, ty, pixelState);
} else if (renderMode == GRAYSCALE_MSB && (bmpVal == 1 || bmpVal == 2)) {
// Light gray (also mark the MSB if it's going to be a dark gray too)
// We have to flag pixels in reverse for the gray buffers, as 0 leave alone, 1 update
drawPixel(tx, ty, false);
} else if (renderMode == GRAYSCALE_LSB && bmpVal == 1) {
// Dark gray
drawPixel(tx, ty, false);
}
if (u8Count == 0) {
u8Count = 8;
u8 = *s++;
u82 = *s2++;
}
}
}
}
*x += xAdvance; // width of this character
}
inline unsigned short readWord(const void* data) { return *static_cast<const unsigned short*>(data); }
void GfxRenderer::getOrientedViewableTRBL(int* outTop, int* outRight, int* outBottom, int* outLeft) const {
switch (orientation) {
case Portrait:
*outTop = VIEWABLE_MARGIN_TOP;
*outRight = VIEWABLE_MARGIN_RIGHT;
*outBottom = VIEWABLE_MARGIN_BOTTOM;
*outLeft = VIEWABLE_MARGIN_LEFT;
break;
case LandscapeClockwise:
*outTop = VIEWABLE_MARGIN_LEFT;
*outRight = VIEWABLE_MARGIN_TOP;
*outBottom = VIEWABLE_MARGIN_RIGHT;
*outLeft = VIEWABLE_MARGIN_BOTTOM;
break;
case PortraitInverted:
*outTop = VIEWABLE_MARGIN_BOTTOM;
*outRight = VIEWABLE_MARGIN_LEFT;
*outBottom = VIEWABLE_MARGIN_TOP;
*outLeft = VIEWABLE_MARGIN_RIGHT;
break;
case LandscapeCounterClockwise:
*outTop = VIEWABLE_MARGIN_RIGHT;
*outRight = VIEWABLE_MARGIN_BOTTOM;
*outBottom = VIEWABLE_MARGIN_LEFT;
*outLeft = VIEWABLE_MARGIN_TOP;
break;
}
}