Xteink-X4-crosspoint-reader/lib/JpegToBmpConverter/JpegToBmpConverter.cpp
Eunchurn Park 6fbdd06101
feat(home): Add cover image thumbnail to Continue Reading card
Display book cover image as background in the Continue Reading card on
the home screen, improving visual identification of the current book.

Key changes:
- Add thumbnail generation (thumb.bmp) for EPUB and XTC/XTCH files
  - Uses same dithering/scaling algorithms as sleep screen covers
  - Target size: 240x400 (half screen) for optimal Continue Reading card fit
- Add JpegToBmpConverter::jpegFileToBmpStreamWithSize() for custom target sizes
- Add GfxRenderer::copyStoredBwBuffer() and freeStoredBwBuffer() for
  framebuffer caching to maintain fast navigation performance
- Add UTF-8 safe string truncation for Korean/CJK text in title/author display
- Draw white boxes behind title/author text for readability over cover image
- Increase HomeActivityTask stack size to 4096 for cover image rendering
- Add bounds checking in XTC thumbnail generation to prevent buffer overflow
2026-01-01 23:51:11 +09:00

751 lines
27 KiB
C++

#include "JpegToBmpConverter.h"
#include <HardwareSerial.h>
#include <SdFat.h>
#include <picojpeg.h>
#include <cstdio>
#include <cstring>
// Context structure for picojpeg callback
struct JpegReadContext {
FsFile& file;
uint8_t buffer[512];
size_t bufferPos;
size_t bufferFilled;
};
// ============================================================================
// IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
// ============================================================================
constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantization), false: 2-bit (4 levels)
// Dithering method selection (only one should be true, or all false for simple quantization):
constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
// Brightness/Contrast adjustments:
constexpr bool USE_BRIGHTNESS = true; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
constexpr bool GAMMA_CORRECTION = true; // Gamma curve (brightens midtones)
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
// ============================================================================
// Integer approximation of gamma correction (brightens midtones)
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
// Fast integer square root approximation for gamma ~0.5 (brightening)
// This brightens dark/mid tones while preserving highlights
const int product = gray * 255;
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
}
// Apply contrast adjustment around midpoint (128)
// factor > 1.0 increases contrast, < 1.0 decreases
static inline int applyContrast(int gray) {
// Integer-based contrast: (gray - 128) * factor + 128
// Using fixed-point: factor 1.15 ≈ 115/100
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
return adjusted;
}
// Combined brightness/contrast/gamma adjustment
static inline int adjustPixel(int gray) {
if (!USE_BRIGHTNESS) return gray;
// Order: contrast first, then brightness, then gamma
gray = applyContrast(gray);
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
if (gray < 0) gray = 0;
gray = applyGamma(gray);
return gray;
}
// Simple quantization without dithering - just divide into 4 levels
static inline uint8_t quantizeSimple(int gray) {
gray = adjustPixel(gray);
// Simple 2-bit quantization: 0-63=0, 64-127=1, 128-191=2, 192-255=3
return static_cast<uint8_t>(gray >> 6);
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
// Uses integer hash to generate pseudo-random threshold per pixel
static inline uint8_t quantizeNoise(int gray, int x, int y) {
gray = adjustPixel(gray);
// Generate noise threshold using integer hash (no regular pattern to alias)
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24); // 0-255
// Map gray (0-255) to 4 levels with dithering
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function - selects between methods based on config
static inline uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
// Error distribution pattern:
// X 1/8 1/8
// 1/8 1/8 1/8
// 1/8
// Less error buildup = fewer artifacts than Floyd-Steinberg
class AtkinsonDitherer {
public:
AtkinsonDitherer(int width) : width(width) {
errorRow0 = new int16_t[width + 4](); // Current row
errorRow1 = new int16_t[width + 4](); // Next row
errorRow2 = new int16_t[width + 4](); // Row after next
}
~AtkinsonDitherer() {
delete[] errorRow0;
delete[] errorRow1;
delete[] errorRow2;
}
uint8_t processPixel(int gray, int x) {
// Apply brightness/contrast/gamma adjustments
gray = adjustPixel(gray);
// Add accumulated error
int adjusted = gray + errorRow0[x + 2];
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error (only distribute 6/8 = 75%)
int error = (adjusted - quantizedValue) >> 3; // error/8
// Distribute 1/8 to each of 6 neighbors
errorRow0[x + 3] += error; // Right
errorRow0[x + 4] += error; // Right+1
errorRow1[x + 1] += error; // Bottom-left
errorRow1[x + 2] += error; // Bottom
errorRow1[x + 3] += error; // Bottom-right
errorRow2[x + 2] += error; // Two rows down
return quantized;
}
void nextRow() {
int16_t* temp = errorRow0;
errorRow0 = errorRow1;
errorRow1 = errorRow2;
errorRow2 = temp;
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
void reset() {
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
private:
int width;
int16_t* errorRow0;
int16_t* errorRow1;
int16_t* errorRow2;
};
// Floyd-Steinberg error diffusion dithering with serpentine scanning
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
// Error distribution pattern (left-to-right):
// X 7/16
// 3/16 5/16 1/16
// Error distribution pattern (right-to-left, mirrored):
// 1/16 5/16 3/16
// 7/16 X
class FloydSteinbergDitherer {
public:
FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
}
~FloydSteinbergDitherer() {
delete[] errorCurRow;
delete[] errorNextRow;
}
// Process a single pixel and return quantized 2-bit value
// x is the logical x position (0 to width-1), direction handled internally
uint8_t processPixel(int gray, int x, bool reverseDirection) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!reverseDirection) {
// Left to right: standard distribution
// Right: 7/16
errorCurRow[x + 2] += (error * 7) >> 4;
// Bottom-left: 3/16
errorNextRow[x] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-right: 1/16
errorNextRow[x + 2] += (error) >> 4;
} else {
// Right to left: mirrored distribution
// Left: 7/16
errorCurRow[x] += (error * 7) >> 4;
// Bottom-right: 3/16
errorNextRow[x + 2] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-left: 1/16
errorNextRow[x] += (error) >> 4;
}
return quantized;
}
// Call at the end of each row to swap buffers
void nextRow() {
// Swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
// Clear the next row buffer
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount++;
}
// Check if current row should be processed in reverse
bool isReverseRow() const { return (rowCount & 1) != 0; }
// Reset for a new image or MCU block
void reset() {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount = 0;
}
private:
int width;
int rowCount;
int16_t* errorCurRow;
int16_t* errorNextRow;
};
inline void write16(Print& out, const uint16_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
}
inline void write32(Print& out, const uint32_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF);
}
inline void write32Signed(Print& out, const int32_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF);
}
// Helper function: Write BMP header with 8-bit grayscale (256 levels)
void writeBmpHeader8bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width + 3) / 4 * 4; // 8 bits per pixel, padded
const int imageSize = bytesPerRow * height;
const uint32_t paletteSize = 256 * 4; // 256 colors * 4 bytes (BGRA)
const uint32_t fileSize = 14 + 40 + paletteSize + imageSize;
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize);
write32(bmpOut, 0); // Reserved
write32(bmpOut, 14 + 40 + paletteSize); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 8); // Bits per pixel (8 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 256); // colorsUsed
write32(bmpOut, 256); // colorsImportant
// Color Palette (256 grayscale entries x 4 bytes = 1024 bytes)
for (int i = 0; i < 256; i++) {
bmpOut.write(static_cast<uint8_t>(i)); // Blue
bmpOut.write(static_cast<uint8_t>(i)); // Green
bmpOut.write(static_cast<uint8_t>(i)); // Red
bmpOut.write(static_cast<uint8_t>(0)); // Reserved
}
}
// Helper function: Write BMP header with 2-bit color depth
static void writeBmpHeader2bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width * 2 + 31) / 32 * 4; // 2 bits per pixel, round up
const int imageSize = bytesPerRow * height;
const uint32_t fileSize = 70 + imageSize; // 14 (file header) + 40 (DIB header) + 16 (palette) + image
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize); // File size
write32(bmpOut, 0); // Reserved
write32(bmpOut, 70); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 2); // Bits per pixel (2 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 4); // colorsUsed
write32(bmpOut, 4); // colorsImportant
// Color Palette (4 colors x 4 bytes = 16 bytes)
// Format: Blue, Green, Red, Reserved (BGRA)
uint8_t palette[16] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0x55, 0x55, 0x55, 0x00, // Color 1: Dark gray (85)
0xAA, 0xAA, 0xAA, 0x00, // Color 2: Light gray (170)
0xFF, 0xFF, 0xFF, 0x00 // Color 3: White
};
for (const uint8_t i : palette) {
bmpOut.write(i);
}
}
// Callback function for picojpeg to read JPEG data
unsigned char JpegToBmpConverter::jpegReadCallback(unsigned char* pBuf, const unsigned char buf_size,
unsigned char* pBytes_actually_read, void* pCallback_data) {
auto* context = static_cast<JpegReadContext*>(pCallback_data);
if (!context || !context->file) {
return PJPG_STREAM_READ_ERROR;
}
// Check if we need to refill our context buffer
if (context->bufferPos >= context->bufferFilled) {
context->bufferFilled = context->file.read(context->buffer, sizeof(context->buffer));
context->bufferPos = 0;
if (context->bufferFilled == 0) {
// EOF or error
*pBytes_actually_read = 0;
return 0; // Success (EOF is normal)
}
}
// Copy available bytes to picojpeg's buffer
const size_t available = context->bufferFilled - context->bufferPos;
const size_t toRead = available < buf_size ? available : buf_size;
memcpy(pBuf, context->buffer + context->bufferPos, toRead);
context->bufferPos += toRead;
*pBytes_actually_read = static_cast<unsigned char>(toRead);
return 0; // Success
}
// Internal implementation with configurable target size
bool JpegToBmpConverter::jpegFileToBmpStreamInternal(FsFile& jpegFile, Print& bmpOut, int targetWidth,
int targetHeight) {
Serial.printf("[%lu] [JPG] Converting JPEG to BMP (target: %dx%d)\n", millis(), targetWidth, targetHeight);
// Setup context for picojpeg callback
JpegReadContext context = {.file = jpegFile, .bufferPos = 0, .bufferFilled = 0};
// Initialize picojpeg decoder
pjpeg_image_info_t imageInfo;
const unsigned char status = pjpeg_decode_init(&imageInfo, jpegReadCallback, &context, 0);
if (status != 0) {
Serial.printf("[%lu] [JPG] JPEG decode init failed with error code: %d\n", millis(), status);
return false;
}
Serial.printf("[%lu] [JPG] JPEG dimensions: %dx%d, components: %d, MCUs: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, imageInfo.m_comps, imageInfo.m_MCUSPerRow, imageInfo.m_MCUSPerCol);
// Safety limits to prevent memory issues on ESP32
constexpr int MAX_IMAGE_WIDTH = 2048;
constexpr int MAX_IMAGE_HEIGHT = 3072;
constexpr int MAX_MCU_ROW_BYTES = 65536;
if (imageInfo.m_width > MAX_IMAGE_WIDTH || imageInfo.m_height > MAX_IMAGE_HEIGHT) {
Serial.printf("[%lu] [JPG] Image too large (%dx%d), max supported: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT);
return false;
}
// Calculate output dimensions (pre-scale to fit display exactly)
int outWidth = imageInfo.m_width;
int outHeight = imageInfo.m_height;
// Use fixed-point scaling (16.16) for sub-pixel accuracy
uint32_t scaleX_fp = 65536; // 1.0 in 16.16 fixed point
uint32_t scaleY_fp = 65536;
bool needsScaling = false;
if (targetWidth > 0 && targetHeight > 0 && (imageInfo.m_width > targetWidth || imageInfo.m_height > targetHeight)) {
// Calculate scale to fit within target dimensions while maintaining aspect ratio
const float scaleToFitWidth = static_cast<float>(targetWidth) / imageInfo.m_width;
const float scaleToFitHeight = static_cast<float>(targetHeight) / imageInfo.m_height;
const float scale = (scaleToFitWidth < scaleToFitHeight) ? scaleToFitWidth : scaleToFitHeight;
outWidth = static_cast<int>(imageInfo.m_width * scale);
outHeight = static_cast<int>(imageInfo.m_height * scale);
// Ensure at least 1 pixel
if (outWidth < 1) outWidth = 1;
if (outHeight < 1) outHeight = 1;
// Calculate fixed-point scale factors (source pixels per output pixel)
// scaleX_fp = (srcWidth << 16) / outWidth
scaleX_fp = (static_cast<uint32_t>(imageInfo.m_width) << 16) / outWidth;
scaleY_fp = (static_cast<uint32_t>(imageInfo.m_height) << 16) / outHeight;
needsScaling = true;
Serial.printf("[%lu] [JPG] Pre-scaling %dx%d -> %dx%d (fit to %dx%d)\n", millis(), imageInfo.m_width,
imageInfo.m_height, outWidth, outHeight, targetWidth, targetHeight);
}
// Write BMP header with output dimensions
int bytesPerRow;
if (USE_8BIT_OUTPUT) {
writeBmpHeader8bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth + 3) / 4 * 4;
} else {
writeBmpHeader2bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth * 2 + 31) / 32 * 4;
}
// Allocate row buffer
auto* rowBuffer = static_cast<uint8_t*>(malloc(bytesPerRow));
if (!rowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate row buffer\n", millis());
return false;
}
// Allocate a buffer for one MCU row worth of grayscale pixels
// This is the minimal memory needed for streaming conversion
const int mcuPixelHeight = imageInfo.m_MCUHeight;
const int mcuRowPixels = imageInfo.m_width * mcuPixelHeight;
// Validate MCU row buffer size before allocation
if (mcuRowPixels > MAX_MCU_ROW_BYTES) {
Serial.printf("[%lu] [JPG] MCU row buffer too large (%d bytes), max: %d\n", millis(), mcuRowPixels,
MAX_MCU_ROW_BYTES);
free(rowBuffer);
return false;
}
auto* mcuRowBuffer = static_cast<uint8_t*>(malloc(mcuRowPixels));
if (!mcuRowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate MCU row buffer (%d bytes)\n", millis(), mcuRowPixels);
free(rowBuffer);
return false;
}
// Create ditherer if enabled (only for 2-bit output)
// Use OUTPUT dimensions for dithering (after prescaling)
AtkinsonDitherer* atkinsonDitherer = nullptr;
FloydSteinbergDitherer* fsDitherer = nullptr;
if (!USE_8BIT_OUTPUT) {
if (USE_ATKINSON) {
atkinsonDitherer = new AtkinsonDitherer(outWidth);
} else if (USE_FLOYD_STEINBERG) {
fsDitherer = new FloydSteinbergDitherer(outWidth);
}
}
// For scaling: accumulate source rows into scaled output rows
// We need to track which source Y maps to which output Y
// Using fixed-point: srcY_fp = outY * scaleY_fp (gives source Y in 16.16 format)
uint32_t* rowAccum = nullptr; // Accumulator for each output X (32-bit for larger sums)
uint16_t* rowCount = nullptr; // Count of source pixels accumulated per output X
int currentOutY = 0; // Current output row being accumulated
uint32_t nextOutY_srcStart = 0; // Source Y where next output row starts (16.16 fixed point)
if (needsScaling) {
rowAccum = new uint32_t[outWidth]();
rowCount = new uint16_t[outWidth]();
nextOutY_srcStart = scaleY_fp; // First boundary is at scaleY_fp (source Y for outY=1)
}
// Process MCUs row-by-row and write to BMP as we go (top-down)
const int mcuPixelWidth = imageInfo.m_MCUWidth;
for (int mcuY = 0; mcuY < imageInfo.m_MCUSPerCol; mcuY++) {
// Clear the MCU row buffer
memset(mcuRowBuffer, 0, mcuRowPixels);
// Decode one row of MCUs
for (int mcuX = 0; mcuX < imageInfo.m_MCUSPerRow; mcuX++) {
const unsigned char mcuStatus = pjpeg_decode_mcu();
if (mcuStatus != 0) {
if (mcuStatus == PJPG_NO_MORE_BLOCKS) {
Serial.printf("[%lu] [JPG] Unexpected end of blocks at MCU (%d, %d)\n", millis(), mcuX, mcuY);
} else {
Serial.printf("[%lu] [JPG] JPEG decode MCU failed at (%d, %d) with error code: %d\n", millis(), mcuX, mcuY,
mcuStatus);
}
free(mcuRowBuffer);
free(rowBuffer);
return false;
}
// picojpeg stores MCU data in 8x8 blocks
// Block layout: H2V2(16x16)=0,64,128,192 H2V1(16x8)=0,64 H1V2(8x16)=0,128
for (int blockY = 0; blockY < mcuPixelHeight; blockY++) {
for (int blockX = 0; blockX < mcuPixelWidth; blockX++) {
const int pixelX = mcuX * mcuPixelWidth + blockX;
if (pixelX >= imageInfo.m_width) continue;
// Calculate proper block offset for picojpeg buffer
const int blockCol = blockX / 8;
const int blockRow = blockY / 8;
const int localX = blockX % 8;
const int localY = blockY % 8;
const int blocksPerRow = mcuPixelWidth / 8;
const int blockIndex = blockRow * blocksPerRow + blockCol;
const int pixelOffset = blockIndex * 64 + localY * 8 + localX;
uint8_t gray;
if (imageInfo.m_comps == 1) {
gray = imageInfo.m_pMCUBufR[pixelOffset];
} else {
const uint8_t r = imageInfo.m_pMCUBufR[pixelOffset];
const uint8_t g = imageInfo.m_pMCUBufG[pixelOffset];
const uint8_t b = imageInfo.m_pMCUBufB[pixelOffset];
gray = (r * 25 + g * 50 + b * 25) / 100;
}
mcuRowBuffer[blockY * imageInfo.m_width + pixelX] = gray;
}
}
}
// Process source rows from this MCU row
const int startRow = mcuY * mcuPixelHeight;
const int endRow = (mcuY + 1) * mcuPixelHeight;
for (int y = startRow; y < endRow && y < imageInfo.m_height; y++) {
const int bufferY = y - startRow;
if (!needsScaling) {
// No scaling - direct output (1:1 mapping)
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
rowBuffer[x] = adjustPixel(gray);
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
} else {
twoBit = quantize(gray, x, y);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
} else {
// Fixed-point area averaging for exact fit scaling
// For each output pixel X, accumulate source pixels that map to it
// srcX range for outX: [outX * scaleX_fp >> 16, (outX+1) * scaleX_fp >> 16)
const uint8_t* srcRow = mcuRowBuffer + bufferY * imageInfo.m_width;
for (int outX = 0; outX < outWidth; outX++) {
// Calculate source X range for this output pixel
const int srcXStart = (static_cast<uint32_t>(outX) * scaleX_fp) >> 16;
const int srcXEnd = (static_cast<uint32_t>(outX + 1) * scaleX_fp) >> 16;
// Accumulate all source pixels in this range
int sum = 0;
int count = 0;
for (int srcX = srcXStart; srcX < srcXEnd && srcX < imageInfo.m_width; srcX++) {
sum += srcRow[srcX];
count++;
}
// Handle edge case: if no pixels in range, use nearest
if (count == 0 && srcXStart < imageInfo.m_width) {
sum = srcRow[srcXStart];
count = 1;
}
rowAccum[outX] += sum;
rowCount[outX] += count;
}
// Check if we've crossed into the next output row
// Current source Y in fixed point: y << 16
const uint32_t srcY_fp = static_cast<uint32_t>(y + 1) << 16;
// Output row when source Y crosses the boundary
if (srcY_fp >= nextOutY_srcStart && currentOutY < outHeight) {
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
rowBuffer[x] = adjustPixel(gray);
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
} else {
twoBit = quantize(gray, x, currentOutY);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
currentOutY++;
// Reset accumulators for next output row
memset(rowAccum, 0, outWidth * sizeof(uint32_t));
memset(rowCount, 0, outWidth * sizeof(uint16_t));
// Update boundary for next output row
nextOutY_srcStart = static_cast<uint32_t>(currentOutY + 1) * scaleY_fp;
}
}
}
}
// Clean up
if (rowAccum) {
delete[] rowAccum;
}
if (rowCount) {
delete[] rowCount;
}
if (atkinsonDitherer) {
delete atkinsonDitherer;
}
if (fsDitherer) {
delete fsDitherer;
}
free(mcuRowBuffer);
free(rowBuffer);
Serial.printf("[%lu] [JPG] Successfully converted JPEG to BMP\n", millis());
return true;
}
// Core function: Convert JPEG file to 2-bit BMP (uses default target size)
bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
return jpegFileToBmpStreamInternal(jpegFile, bmpOut, TARGET_MAX_WIDTH, TARGET_MAX_HEIGHT);
}
// Convert with custom target size (for thumbnails)
bool JpegToBmpConverter::jpegFileToBmpStreamWithSize(FsFile& jpegFile, Print& bmpOut, int targetMaxWidth,
int targetMaxHeight) {
return jpegFileToBmpStreamInternal(jpegFile, bmpOut, targetMaxWidth, targetMaxHeight);
}