Xteink-X4-crosspoint-reader/lib/Xtc/Xtc.cpp
2026-02-01 21:58:55 +07:00

623 lines
21 KiB
C++

/**
* Xtc.cpp
*
* Main XTC ebook class implementation
* XTC ebook support for CrossPoint Reader
*/
#include "Xtc.h"
#include <HardwareSerial.h>
#include <SDCardManager.h>
bool Xtc::load() {
Serial.printf("[%lu] [XTC] Loading XTC: %s\n", millis(), filepath.c_str());
// Initialize parser
parser.reset(new xtc::XtcParser());
// Open XTC file
xtc::XtcError err = parser->open(filepath.c_str());
if (err != xtc::XtcError::OK) {
Serial.printf("[%lu] [XTC] Failed to load: %s\n", millis(), xtc::errorToString(err));
parser.reset();
return false;
}
loaded = true;
Serial.printf("[%lu] [XTC] Loaded XTC: %s (%lu pages)\n", millis(), filepath.c_str(), parser->getPageCount());
return true;
}
bool Xtc::clearCache() const {
if (!SdMan.exists(cachePath.c_str())) {
Serial.printf("[%lu] [XTC] Cache does not exist, no action needed\n", millis());
return true;
}
if (!SdMan.removeDir(cachePath.c_str())) {
Serial.printf("[%lu] [XTC] Failed to clear cache\n", millis());
return false;
}
Serial.printf("[%lu] [XTC] Cache cleared successfully\n", millis());
return true;
}
void Xtc::setupCacheDir() const {
if (SdMan.exists(cachePath.c_str())) {
return;
}
// Create directories recursively
for (size_t i = 1; i < cachePath.length(); i++) {
if (cachePath[i] == '/') {
SdMan.mkdir(cachePath.substr(0, i).c_str());
}
}
SdMan.mkdir(cachePath.c_str());
}
std::string Xtc::getTitle() const {
if (!loaded || !parser) {
return "";
}
// Try to get title from XTC metadata first
std::string title = parser->getTitle();
if (!title.empty()) {
return title;
}
// Fallback: extract filename from path as title
size_t lastSlash = filepath.find_last_of('/');
size_t lastDot = filepath.find_last_of('.');
if (lastSlash == std::string::npos) {
lastSlash = 0;
} else {
lastSlash++;
}
if (lastDot == std::string::npos || lastDot <= lastSlash) {
return filepath.substr(lastSlash);
}
return filepath.substr(lastSlash, lastDot - lastSlash);
}
std::string Xtc::getAuthor() const {
if (!loaded || !parser) {
return "";
}
// Try to get author from XTC metadata
return parser->getAuthor();
}
bool Xtc::hasChapters() const {
if (!loaded || !parser) {
return false;
}
return parser->hasChapters();
}
const std::vector<xtc::ChapterInfo>& Xtc::getChapters() const {
static const std::vector<xtc::ChapterInfo> kEmpty;
if (!loaded || !parser) {
return kEmpty;
}
return parser->getChapters();
}
std::string Xtc::getCoverBmpPath() const { return cachePath + "/cover.bmp"; }
bool Xtc::generateCoverBmp() const {
// Already generated
if (SdMan.exists(getCoverBmpPath().c_str())) {
return true;
}
if (!loaded || !parser) {
Serial.printf("[%lu] [XTC] Cannot generate cover BMP, file not loaded\n", millis());
return false;
}
if (parser->getPageCount() == 0) {
Serial.printf("[%lu] [XTC] No pages in XTC file\n", millis());
return false;
}
// Setup cache directory
setupCacheDir();
// Get first page info for cover
xtc::PageInfo pageInfo;
if (!parser->getPageInfo(0, pageInfo)) {
Serial.printf("[%lu] [XTC] Failed to get first page info\n", millis());
return false;
}
// Get bit depth
const uint8_t bitDepth = parser->getBitDepth();
// Allocate buffer for page data
// XTG (1-bit): Row-major, ((width+7)/8) * height bytes
// XTH (2-bit): Two bit planes, column-major, ((width * height + 7) / 8) * 2 bytes
size_t bitmapSize;
if (bitDepth == 2) {
bitmapSize = ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageInfo.width + 7) / 8) * pageInfo.height;
}
uint8_t* pageBuffer = static_cast<uint8_t*>(malloc(bitmapSize));
if (!pageBuffer) {
Serial.printf("[%lu] [XTC] Failed to allocate page buffer (%lu bytes)\n", millis(), bitmapSize);
return false;
}
// Load first page (cover)
size_t bytesRead = const_cast<xtc::XtcParser*>(parser.get())->loadPage(0, pageBuffer, bitmapSize);
if (bytesRead == 0) {
Serial.printf("[%lu] [XTC] Failed to load cover page\n", millis());
free(pageBuffer);
return false;
}
// Create BMP file
FsFile coverBmp;
if (!SdMan.openFileForWrite("XTC", getCoverBmpPath(), coverBmp)) {
Serial.printf("[%lu] [XTC] Failed to create cover BMP file\n", millis());
free(pageBuffer);
return false;
}
// Write BMP header
// BMP file header (14 bytes)
const uint32_t rowSize = ((pageInfo.width + 31) / 32) * 4; // Row size aligned to 4 bytes
const uint32_t imageSize = rowSize * pageInfo.height;
const uint32_t fileSize = 14 + 40 + 8 + imageSize; // Header + DIB + palette + data
// File header
coverBmp.write('B');
coverBmp.write('M');
coverBmp.write(reinterpret_cast<const uint8_t*>(&fileSize), 4);
uint32_t reserved = 0;
coverBmp.write(reinterpret_cast<const uint8_t*>(&reserved), 4);
uint32_t dataOffset = 14 + 40 + 8; // 1-bit palette has 2 colors (8 bytes)
coverBmp.write(reinterpret_cast<const uint8_t*>(&dataOffset), 4);
// DIB header (BITMAPINFOHEADER - 40 bytes)
uint32_t dibHeaderSize = 40;
coverBmp.write(reinterpret_cast<const uint8_t*>(&dibHeaderSize), 4);
int32_t width = pageInfo.width;
coverBmp.write(reinterpret_cast<const uint8_t*>(&width), 4);
int32_t height = -static_cast<int32_t>(pageInfo.height); // Negative for top-down
coverBmp.write(reinterpret_cast<const uint8_t*>(&height), 4);
uint16_t planes = 1;
coverBmp.write(reinterpret_cast<const uint8_t*>(&planes), 2);
uint16_t bitsPerPixel = 1; // 1-bit monochrome
coverBmp.write(reinterpret_cast<const uint8_t*>(&bitsPerPixel), 2);
uint32_t compression = 0; // BI_RGB (no compression)
coverBmp.write(reinterpret_cast<const uint8_t*>(&compression), 4);
coverBmp.write(reinterpret_cast<const uint8_t*>(&imageSize), 4);
int32_t ppmX = 2835; // 72 DPI
coverBmp.write(reinterpret_cast<const uint8_t*>(&ppmX), 4);
int32_t ppmY = 2835;
coverBmp.write(reinterpret_cast<const uint8_t*>(&ppmY), 4);
uint32_t colorsUsed = 2;
coverBmp.write(reinterpret_cast<const uint8_t*>(&colorsUsed), 4);
uint32_t colorsImportant = 2;
coverBmp.write(reinterpret_cast<const uint8_t*>(&colorsImportant), 4);
// Color palette (2 colors for 1-bit)
// XTC 1-bit polarity: 0 = black, 1 = white (standard BMP palette order)
// Color 0: Black (text/foreground in XTC)
uint8_t black[4] = {0x00, 0x00, 0x00, 0x00};
coverBmp.write(black, 4);
// Color 1: White (background in XTC)
uint8_t white[4] = {0xFF, 0xFF, 0xFF, 0x00};
coverBmp.write(white, 4);
// Write bitmap data
// BMP requires 4-byte row alignment
const size_t dstRowSize = (pageInfo.width + 7) / 8; // 1-bit destination row size
if (bitDepth == 2) {
// XTH 2-bit mode: Two bit planes, column-major order
// - Columns scanned right to left (x = width-1 down to 0)
// - 8 vertical pixels per byte (MSB = topmost pixel in group)
// - First plane: Bit1, Second plane: Bit2
// - Pixel value = (bit1 << 1) | bit2
const size_t planeSize = (static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8;
const uint8_t* plane1 = pageBuffer; // Bit1 plane
const uint8_t* plane2 = pageBuffer + planeSize; // Bit2 plane
const size_t colBytes = (pageInfo.height + 7) / 8; // Bytes per column
// Allocate a row buffer for 1-bit output
uint8_t* rowBuffer = static_cast<uint8_t*>(malloc(dstRowSize));
if (!rowBuffer) {
free(pageBuffer);
coverBmp.close();
return false;
}
for (uint16_t y = 0; y < pageInfo.height; y++) {
memset(rowBuffer, 0xFF, dstRowSize); // Start with all white
for (uint16_t x = 0; x < pageInfo.width; x++) {
// Column-major, right to left: column index = (width - 1 - x)
const size_t colIndex = pageInfo.width - 1 - x;
const size_t byteInCol = y / 8;
const size_t bitInByte = 7 - (y % 8); // MSB = topmost pixel
const size_t byteOffset = colIndex * colBytes + byteInCol;
const uint8_t bit1 = (plane1[byteOffset] >> bitInByte) & 1;
const uint8_t bit2 = (plane2[byteOffset] >> bitInByte) & 1;
const uint8_t pixelValue = (bit1 << 1) | bit2;
// Threshold: 0=white (1); 1,2,3=black (0)
if (pixelValue >= 1) {
// Set bit to 0 (black) in BMP format
const size_t dstByte = x / 8;
const size_t dstBit = 7 - (x % 8);
rowBuffer[dstByte] &= ~(1 << dstBit);
}
}
// Write converted row
coverBmp.write(rowBuffer, dstRowSize);
// Pad to 4-byte boundary
uint8_t padding[4] = {0, 0, 0, 0};
size_t paddingSize = rowSize - dstRowSize;
if (paddingSize > 0) {
coverBmp.write(padding, paddingSize);
}
}
free(rowBuffer);
} else {
// 1-bit source: write directly with proper padding
const size_t srcRowSize = (pageInfo.width + 7) / 8;
for (uint16_t y = 0; y < pageInfo.height; y++) {
// Write source row
coverBmp.write(pageBuffer + y * srcRowSize, srcRowSize);
// Pad to 4-byte boundary
uint8_t padding[4] = {0, 0, 0, 0};
size_t paddingSize = rowSize - srcRowSize;
if (paddingSize > 0) {
coverBmp.write(padding, paddingSize);
}
}
}
coverBmp.close();
free(pageBuffer);
Serial.printf("[%lu] [XTC] Generated cover BMP: %s\n", millis(), getCoverBmpPath().c_str());
return true;
}
std::string Xtc::getThumbBmpPath() const { return cachePath + "/thumb_[HEIGHT].bmp"; }
std::string Xtc::getThumbBmpPath(int height) const { return cachePath + "/thumb_" + std::to_string(height) + ".bmp"; }
bool Xtc::generateThumbBmp(int height) const {
// Already generated
if (SdMan.exists(getThumbBmpPath(height).c_str())) {
return true;
}
if (!loaded || !parser) {
Serial.printf("[%lu] [XTC] Cannot generate thumb BMP, file not loaded\n", millis());
return false;
}
if (parser->getPageCount() == 0) {
Serial.printf("[%lu] [XTC] No pages in XTC file\n", millis());
return false;
}
// Setup cache directory
setupCacheDir();
// Get first page info for cover
xtc::PageInfo pageInfo;
if (!parser->getPageInfo(0, pageInfo)) {
Serial.printf("[%lu] [XTC] Failed to get first page info\n", millis());
return false;
}
// Get bit depth
const uint8_t bitDepth = parser->getBitDepth();
// Calculate target dimensions for thumbnail (fit within 240x400 Continue Reading card)
int THUMB_TARGET_WIDTH = height * 0.6;
int THUMB_TARGET_HEIGHT = height;
// Calculate scale factor
float scaleX = static_cast<float>(THUMB_TARGET_WIDTH) / pageInfo.width;
float scaleY = static_cast<float>(THUMB_TARGET_HEIGHT) / pageInfo.height;
float scale = (scaleX < scaleY) ? scaleX : scaleY;
// Only scale down, never up
if (scale >= 1.0f) {
// Page is already small enough, just use cover.bmp
// Copy cover.bmp to thumb.bmp
if (generateCoverBmp()) {
FsFile src, dst;
if (SdMan.openFileForRead("XTC", getCoverBmpPath(), src)) {
if (SdMan.openFileForWrite("XTC", getThumbBmpPath(height), dst)) {
uint8_t buffer[512];
while (src.available()) {
size_t bytesRead = src.read(buffer, sizeof(buffer));
dst.write(buffer, bytesRead);
}
dst.close();
}
src.close();
}
Serial.printf("[%lu] [XTC] Copied cover to thumb (no scaling needed)\n", millis());
return SdMan.exists(getThumbBmpPath(height).c_str());
}
return false;
}
uint16_t thumbWidth = static_cast<uint16_t>(pageInfo.width * scale);
uint16_t thumbHeight = static_cast<uint16_t>(pageInfo.height * scale);
Serial.printf("[%lu] [XTC] Generating thumb BMP: %dx%d -> %dx%d (scale: %.3f)\n", millis(), pageInfo.width,
pageInfo.height, thumbWidth, thumbHeight, scale);
// Allocate buffer for page data
size_t bitmapSize;
if (bitDepth == 2) {
bitmapSize = ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageInfo.width + 7) / 8) * pageInfo.height;
}
uint8_t* pageBuffer = static_cast<uint8_t*>(malloc(bitmapSize));
if (!pageBuffer) {
Serial.printf("[%lu] [XTC] Failed to allocate page buffer (%lu bytes)\n", millis(), bitmapSize);
return false;
}
// Load first page (cover)
size_t bytesRead = const_cast<xtc::XtcParser*>(parser.get())->loadPage(0, pageBuffer, bitmapSize);
if (bytesRead == 0) {
Serial.printf("[%lu] [XTC] Failed to load cover page for thumb\n", millis());
free(pageBuffer);
return false;
}
// Create thumbnail BMP file - use 1-bit format for fast home screen rendering (no gray passes)
FsFile thumbBmp;
if (!SdMan.openFileForWrite("XTC", getThumbBmpPath(height), thumbBmp)) {
Serial.printf("[%lu] [XTC] Failed to create thumb BMP file\n", millis());
free(pageBuffer);
return false;
}
// Write 1-bit BMP header for fast home screen rendering
const uint32_t rowSize = (thumbWidth + 31) / 32 * 4; // 1 bit per pixel, aligned to 4 bytes
const uint32_t imageSize = rowSize * thumbHeight;
const uint32_t fileSize = 14 + 40 + 8 + imageSize; // 8 bytes for 2-color palette
// File header
thumbBmp.write('B');
thumbBmp.write('M');
thumbBmp.write(reinterpret_cast<const uint8_t*>(&fileSize), 4);
uint32_t reserved = 0;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&reserved), 4);
uint32_t dataOffset = 14 + 40 + 8; // 1-bit palette has 2 colors (8 bytes)
thumbBmp.write(reinterpret_cast<const uint8_t*>(&dataOffset), 4);
// DIB header
uint32_t dibHeaderSize = 40;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&dibHeaderSize), 4);
int32_t widthVal = thumbWidth;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&widthVal), 4);
int32_t heightVal = -static_cast<int32_t>(thumbHeight); // Negative for top-down
thumbBmp.write(reinterpret_cast<const uint8_t*>(&heightVal), 4);
uint16_t planes = 1;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&planes), 2);
uint16_t bitsPerPixel = 1; // 1-bit for black and white
thumbBmp.write(reinterpret_cast<const uint8_t*>(&bitsPerPixel), 2);
uint32_t compression = 0;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&compression), 4);
thumbBmp.write(reinterpret_cast<const uint8_t*>(&imageSize), 4);
int32_t ppmX = 2835;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&ppmX), 4);
int32_t ppmY = 2835;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&ppmY), 4);
uint32_t colorsUsed = 2;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&colorsUsed), 4);
uint32_t colorsImportant = 2;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&colorsImportant), 4);
// Color palette (2 colors for 1-bit: black and white)
uint8_t palette[8] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0xFF, 0xFF, 0xFF, 0x00 // Color 1: White
};
thumbBmp.write(palette, 8);
// Allocate row buffer for 1-bit output
uint8_t* rowBuffer = static_cast<uint8_t*>(malloc(rowSize));
if (!rowBuffer) {
free(pageBuffer);
thumbBmp.close();
return false;
}
// Fixed-point scale factor (16.16)
uint32_t scaleInv_fp = static_cast<uint32_t>(65536.0f / scale);
// Pre-calculate plane info for 2-bit mode
const size_t planeSize = (bitDepth == 2) ? ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) : 0;
const uint8_t* plane1 = (bitDepth == 2) ? pageBuffer : nullptr;
const uint8_t* plane2 = (bitDepth == 2) ? pageBuffer + planeSize : nullptr;
const size_t colBytes = (bitDepth == 2) ? ((pageInfo.height + 7) / 8) : 0;
const size_t srcRowBytes = (bitDepth == 1) ? ((pageInfo.width + 7) / 8) : 0;
for (uint16_t dstY = 0; dstY < thumbHeight; dstY++) {
memset(rowBuffer, 0xFF, rowSize); // Start with all white (bit 1)
// Calculate source Y range with bounds checking
uint32_t srcYStart = (static_cast<uint32_t>(dstY) * scaleInv_fp) >> 16;
uint32_t srcYEnd = (static_cast<uint32_t>(dstY + 1) * scaleInv_fp) >> 16;
if (srcYStart >= pageInfo.height) srcYStart = pageInfo.height - 1;
if (srcYEnd > pageInfo.height) srcYEnd = pageInfo.height;
if (srcYEnd <= srcYStart) srcYEnd = srcYStart + 1;
if (srcYEnd > pageInfo.height) srcYEnd = pageInfo.height;
for (uint16_t dstX = 0; dstX < thumbWidth; dstX++) {
// Calculate source X range with bounds checking
uint32_t srcXStart = (static_cast<uint32_t>(dstX) * scaleInv_fp) >> 16;
uint32_t srcXEnd = (static_cast<uint32_t>(dstX + 1) * scaleInv_fp) >> 16;
if (srcXStart >= pageInfo.width) srcXStart = pageInfo.width - 1;
if (srcXEnd > pageInfo.width) srcXEnd = pageInfo.width;
if (srcXEnd <= srcXStart) srcXEnd = srcXStart + 1;
if (srcXEnd > pageInfo.width) srcXEnd = pageInfo.width;
// Area averaging: sum grayscale values (0-255 range)
uint32_t graySum = 0;
uint32_t totalCount = 0;
for (uint32_t srcY = srcYStart; srcY < srcYEnd && srcY < pageInfo.height; srcY++) {
for (uint32_t srcX = srcXStart; srcX < srcXEnd && srcX < pageInfo.width; srcX++) {
uint8_t grayValue = 255; // Default: white
if (bitDepth == 2) {
// XTH 2-bit mode: pixel value 0-3
// Bounds check for column index
if (srcX < pageInfo.width) {
const size_t colIndex = pageInfo.width - 1 - srcX;
const size_t byteInCol = srcY / 8;
const size_t bitInByte = 7 - (srcY % 8);
const size_t byteOffset = colIndex * colBytes + byteInCol;
// Bounds check for buffer access
if (byteOffset < planeSize) {
const uint8_t bit1 = (plane1[byteOffset] >> bitInByte) & 1;
const uint8_t bit2 = (plane2[byteOffset] >> bitInByte) & 1;
const uint8_t pixelValue = (bit1 << 1) | bit2;
// Convert 2-bit (0-3) to grayscale: 0=black, 3=white
// pixelValue: 0=white, 1=light gray, 2=dark gray, 3=black (XTC polarity)
grayValue = (3 - pixelValue) * 85; // 0->255, 1->170, 2->85, 3->0
}
}
} else {
// 1-bit mode
const size_t byteIdx = srcY * srcRowBytes + srcX / 8;
const size_t bitIdx = 7 - (srcX % 8);
// Bounds check for buffer access
if (byteIdx < bitmapSize) {
const uint8_t pixelBit = (pageBuffer[byteIdx] >> bitIdx) & 1;
// XTC 1-bit polarity: 0=black, 1=white (same as BMP palette)
grayValue = pixelBit ? 255 : 0;
}
}
graySum += grayValue;
totalCount++;
}
}
// Calculate average grayscale and quantize to 1-bit with noise dithering
uint8_t avgGray = (totalCount > 0) ? static_cast<uint8_t>(graySum / totalCount) : 255;
// Hash-based noise dithering for 1-bit output
uint32_t hash = static_cast<uint32_t>(dstX) * 374761393u + static_cast<uint32_t>(dstY) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24); // 0-255
const int adjustedThreshold = 128 + ((threshold - 128) / 2); // Range: 64-192
// Quantize to 1-bit: 0=black, 1=white
uint8_t oneBit = (avgGray >= adjustedThreshold) ? 1 : 0;
// Pack 1-bit value into row buffer (MSB first, 8 pixels per byte)
const size_t byteIndex = dstX / 8;
const size_t bitOffset = 7 - (dstX % 8);
// Bounds check for row buffer access
if (byteIndex < rowSize) {
if (oneBit) {
rowBuffer[byteIndex] |= (1 << bitOffset); // Set bit for white
} else {
rowBuffer[byteIndex] &= ~(1 << bitOffset); // Clear bit for black
}
}
}
// Write row (already padded to 4-byte boundary by rowSize)
thumbBmp.write(rowBuffer, rowSize);
}
free(rowBuffer);
thumbBmp.close();
free(pageBuffer);
Serial.printf("[%lu] [XTC] Generated thumb BMP (%dx%d): %s\n", millis(), thumbWidth, thumbHeight,
getThumbBmpPath(height).c_str());
return true;
}
uint32_t Xtc::getPageCount() const {
if (!loaded || !parser) {
return 0;
}
return parser->getPageCount();
}
uint16_t Xtc::getPageWidth() const {
if (!loaded || !parser) {
return 0;
}
return parser->getWidth();
}
uint16_t Xtc::getPageHeight() const {
if (!loaded || !parser) {
return 0;
}
return parser->getHeight();
}
uint8_t Xtc::getBitDepth() const {
if (!loaded || !parser) {
return 1; // Default to 1-bit
}
return parser->getBitDepth();
}
size_t Xtc::loadPage(uint32_t pageIndex, uint8_t* buffer, size_t bufferSize) const {
if (!loaded || !parser) {
return 0;
}
return const_cast<xtc::XtcParser*>(parser.get())->loadPage(pageIndex, buffer, bufferSize);
}
xtc::XtcError Xtc::loadPageStreaming(uint32_t pageIndex,
std::function<void(const uint8_t* data, size_t size, size_t offset)> callback,
size_t chunkSize) const {
if (!loaded || !parser) {
return xtc::XtcError::FILE_NOT_FOUND;
}
return const_cast<xtc::XtcParser*>(parser.get())->loadPageStreaming(pageIndex, callback, chunkSize);
}
uint8_t Xtc::calculateProgress(uint32_t currentPage) const {
if (!loaded || !parser || parser->getPageCount() == 0) {
return 0;
}
return static_cast<uint8_t>((currentPage + 1) * 100 / parser->getPageCount());
}
xtc::XtcError Xtc::getLastError() const {
if (!parser) {
return xtc::XtcError::FILE_NOT_FOUND;
}
return parser->getLastError();
}