Xteink-X4-crosspoint-reader/lib/JpegToBmpConverter/JpegToBmpConverter.cpp
Eunchurn Park fecd1849b9
Add cover image display in *Continue Reading* card with framebuffer caching (#200)
## Summary

* **What is the goal of this PR?** (e.g., Fixes a bug in the user
authentication module,

Display the book cover image in the **"Continue Reading"** card on the
home screen, with fast navigation using framebuffer caching.

* **What changes are included?**

- Display book cover image in the "Continue Reading" card on home screen
- Load cover from cached BMP (same as sleep screen cover)
- Add framebuffer store/restore functions (`copyStoredBwBuffer`,
`freeStoredBwBuffer`) for fast navigation after initial render
- Fix `drawBitmap` scaling bug: apply scale to offset only, not to base
coordinates
- Add white text boxes behind title/author/continue reading label for
readability on cover
- Support both EPUB and XTC file cover images
- Increase HomeActivity task stack size from 2048 to 4096 for cover
image rendering

## Additional Context

* Add any other information that might be helpful for the reviewer
(e.g., performance implications, potential risks, specific areas to
focus on).

- Performance: First render loads cover from SD card (~800ms),
subsequent navigation uses cached framebuffer (~instant)
- Memory: Framebuffer cache uses ~48KB (6 chunks × 8KB) while on home
screen, freed on exit
- Fallback: If cover image is not available, falls back to standard
text-only display
- The `drawBitmap` fix corrects a bug where screenY = (y + offset) scale
was incorrectly scaling the base coordinates. Now correctly uses screenY
= y + (offset scale)
2026-01-14 21:24:02 +11:00

568 lines
23 KiB
C++

#include "JpegToBmpConverter.h"
#include <HardwareSerial.h>
#include <SdFat.h>
#include <picojpeg.h>
#include <cstdio>
#include <cstring>
#include "BitmapHelpers.h"
// Context structure for picojpeg callback
struct JpegReadContext {
FsFile& file;
uint8_t buffer[512];
size_t bufferPos;
size_t bufferFilled;
};
// ============================================================================
// IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
// ============================================================================
constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantization), false: 2-bit (4 levels)
// Dithering method selection (only one should be true, or all false for simple quantization):
constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
// ============================================================================
inline void write16(Print& out, const uint16_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
}
inline void write32(Print& out, const uint32_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF);
}
inline void write32Signed(Print& out, const int32_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF);
}
// Helper function: Write BMP header with 8-bit grayscale (256 levels)
void writeBmpHeader8bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width + 3) / 4 * 4; // 8 bits per pixel, padded
const int imageSize = bytesPerRow * height;
const uint32_t paletteSize = 256 * 4; // 256 colors * 4 bytes (BGRA)
const uint32_t fileSize = 14 + 40 + paletteSize + imageSize;
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize);
write32(bmpOut, 0); // Reserved
write32(bmpOut, 14 + 40 + paletteSize); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 8); // Bits per pixel (8 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 256); // colorsUsed
write32(bmpOut, 256); // colorsImportant
// Color Palette (256 grayscale entries x 4 bytes = 1024 bytes)
for (int i = 0; i < 256; i++) {
bmpOut.write(static_cast<uint8_t>(i)); // Blue
bmpOut.write(static_cast<uint8_t>(i)); // Green
bmpOut.write(static_cast<uint8_t>(i)); // Red
bmpOut.write(static_cast<uint8_t>(0)); // Reserved
}
}
// Helper function: Write BMP header with 1-bit color depth (black and white)
static void writeBmpHeader1bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width + 31) / 32 * 4; // 1 bit per pixel, round up to 4-byte boundary
const int imageSize = bytesPerRow * height;
const uint32_t fileSize = 62 + imageSize; // 14 (file header) + 40 (DIB header) + 8 (palette) + image
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize); // File size
write32(bmpOut, 0); // Reserved
write32(bmpOut, 62); // Offset to pixel data (14 + 40 + 8)
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 1); // Bits per pixel (1 bit)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 2); // colorsUsed
write32(bmpOut, 2); // colorsImportant
// Color Palette (2 colors x 4 bytes = 8 bytes)
// Format: Blue, Green, Red, Reserved (BGRA)
// Note: In 1-bit BMP, palette index 0 = black, 1 = white
uint8_t palette[8] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0xFF, 0xFF, 0xFF, 0x00 // Color 1: White
};
for (const uint8_t i : palette) {
bmpOut.write(i);
}
}
// Helper function: Write BMP header with 2-bit color depth
static void writeBmpHeader2bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width * 2 + 31) / 32 * 4; // 2 bits per pixel, round up
const int imageSize = bytesPerRow * height;
const uint32_t fileSize = 70 + imageSize; // 14 (file header) + 40 (DIB header) + 16 (palette) + image
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize); // File size
write32(bmpOut, 0); // Reserved
write32(bmpOut, 70); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 2); // Bits per pixel (2 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 4); // colorsUsed
write32(bmpOut, 4); // colorsImportant
// Color Palette (4 colors x 4 bytes = 16 bytes)
// Format: Blue, Green, Red, Reserved (BGRA)
uint8_t palette[16] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0x55, 0x55, 0x55, 0x00, // Color 1: Dark gray (85)
0xAA, 0xAA, 0xAA, 0x00, // Color 2: Light gray (170)
0xFF, 0xFF, 0xFF, 0x00 // Color 3: White
};
for (const uint8_t i : palette) {
bmpOut.write(i);
}
}
// Callback function for picojpeg to read JPEG data
unsigned char JpegToBmpConverter::jpegReadCallback(unsigned char* pBuf, const unsigned char buf_size,
unsigned char* pBytes_actually_read, void* pCallback_data) {
auto* context = static_cast<JpegReadContext*>(pCallback_data);
if (!context || !context->file) {
return PJPG_STREAM_READ_ERROR;
}
// Check if we need to refill our context buffer
if (context->bufferPos >= context->bufferFilled) {
context->bufferFilled = context->file.read(context->buffer, sizeof(context->buffer));
context->bufferPos = 0;
if (context->bufferFilled == 0) {
// EOF or error
*pBytes_actually_read = 0;
return 0; // Success (EOF is normal)
}
}
// Copy available bytes to picojpeg's buffer
const size_t available = context->bufferFilled - context->bufferPos;
const size_t toRead = available < buf_size ? available : buf_size;
memcpy(pBuf, context->buffer + context->bufferPos, toRead);
context->bufferPos += toRead;
*pBytes_actually_read = static_cast<unsigned char>(toRead);
return 0; // Success
}
// Internal implementation with configurable target size and bit depth
bool JpegToBmpConverter::jpegFileToBmpStreamInternal(FsFile& jpegFile, Print& bmpOut, int targetWidth, int targetHeight,
bool oneBit) {
Serial.printf("[%lu] [JPG] Converting JPEG to %s BMP (target: %dx%d)\n", millis(), oneBit ? "1-bit" : "2-bit",
targetWidth, targetHeight);
// Setup context for picojpeg callback
JpegReadContext context = {.file = jpegFile, .bufferPos = 0, .bufferFilled = 0};
// Initialize picojpeg decoder
pjpeg_image_info_t imageInfo;
const unsigned char status = pjpeg_decode_init(&imageInfo, jpegReadCallback, &context, 0);
if (status != 0) {
Serial.printf("[%lu] [JPG] JPEG decode init failed with error code: %d\n", millis(), status);
return false;
}
Serial.printf("[%lu] [JPG] JPEG dimensions: %dx%d, components: %d, MCUs: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, imageInfo.m_comps, imageInfo.m_MCUSPerRow, imageInfo.m_MCUSPerCol);
// Safety limits to prevent memory issues on ESP32
constexpr int MAX_IMAGE_WIDTH = 2048;
constexpr int MAX_IMAGE_HEIGHT = 3072;
constexpr int MAX_MCU_ROW_BYTES = 65536;
if (imageInfo.m_width > MAX_IMAGE_WIDTH || imageInfo.m_height > MAX_IMAGE_HEIGHT) {
Serial.printf("[%lu] [JPG] Image too large (%dx%d), max supported: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT);
return false;
}
// Calculate output dimensions (pre-scale to fit display exactly)
int outWidth = imageInfo.m_width;
int outHeight = imageInfo.m_height;
// Use fixed-point scaling (16.16) for sub-pixel accuracy
uint32_t scaleX_fp = 65536; // 1.0 in 16.16 fixed point
uint32_t scaleY_fp = 65536;
bool needsScaling = false;
if (targetWidth > 0 && targetHeight > 0 && (imageInfo.m_width > targetWidth || imageInfo.m_height > targetHeight)) {
// Calculate scale to fit within target dimensions while maintaining aspect ratio
const float scaleToFitWidth = static_cast<float>(targetWidth) / imageInfo.m_width;
const float scaleToFitHeight = static_cast<float>(targetHeight) / imageInfo.m_height;
// We scale to the smaller dimension, so we can potentially crop later.
// TODO: ideally, we already crop here.
const float scale = (scaleToFitWidth > scaleToFitHeight) ? scaleToFitWidth : scaleToFitHeight;
outWidth = static_cast<int>(imageInfo.m_width * scale);
outHeight = static_cast<int>(imageInfo.m_height * scale);
// Ensure at least 1 pixel
if (outWidth < 1) outWidth = 1;
if (outHeight < 1) outHeight = 1;
// Calculate fixed-point scale factors (source pixels per output pixel)
// scaleX_fp = (srcWidth << 16) / outWidth
scaleX_fp = (static_cast<uint32_t>(imageInfo.m_width) << 16) / outWidth;
scaleY_fp = (static_cast<uint32_t>(imageInfo.m_height) << 16) / outHeight;
needsScaling = true;
Serial.printf("[%lu] [JPG] Pre-scaling %dx%d -> %dx%d (fit to %dx%d)\n", millis(), imageInfo.m_width,
imageInfo.m_height, outWidth, outHeight, targetWidth, targetHeight);
}
// Write BMP header with output dimensions
int bytesPerRow;
if (USE_8BIT_OUTPUT && !oneBit) {
writeBmpHeader8bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth + 3) / 4 * 4;
} else if (oneBit) {
writeBmpHeader1bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth + 31) / 32 * 4; // 1 bit per pixel
} else {
writeBmpHeader2bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth * 2 + 31) / 32 * 4;
}
// Allocate row buffer
auto* rowBuffer = static_cast<uint8_t*>(malloc(bytesPerRow));
if (!rowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate row buffer\n", millis());
return false;
}
// Allocate a buffer for one MCU row worth of grayscale pixels
// This is the minimal memory needed for streaming conversion
const int mcuPixelHeight = imageInfo.m_MCUHeight;
const int mcuRowPixels = imageInfo.m_width * mcuPixelHeight;
// Validate MCU row buffer size before allocation
if (mcuRowPixels > MAX_MCU_ROW_BYTES) {
Serial.printf("[%lu] [JPG] MCU row buffer too large (%d bytes), max: %d\n", millis(), mcuRowPixels,
MAX_MCU_ROW_BYTES);
free(rowBuffer);
return false;
}
auto* mcuRowBuffer = static_cast<uint8_t*>(malloc(mcuRowPixels));
if (!mcuRowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate MCU row buffer (%d bytes)\n", millis(), mcuRowPixels);
free(rowBuffer);
return false;
}
// Create ditherer if enabled
// Use OUTPUT dimensions for dithering (after prescaling)
AtkinsonDitherer* atkinsonDitherer = nullptr;
FloydSteinbergDitherer* fsDitherer = nullptr;
Atkinson1BitDitherer* atkinson1BitDitherer = nullptr;
if (oneBit) {
// For 1-bit output, use Atkinson dithering for better quality
atkinson1BitDitherer = new Atkinson1BitDitherer(outWidth);
} else if (!USE_8BIT_OUTPUT) {
if (USE_ATKINSON) {
atkinsonDitherer = new AtkinsonDitherer(outWidth);
} else if (USE_FLOYD_STEINBERG) {
fsDitherer = new FloydSteinbergDitherer(outWidth);
}
}
// For scaling: accumulate source rows into scaled output rows
// We need to track which source Y maps to which output Y
// Using fixed-point: srcY_fp = outY * scaleY_fp (gives source Y in 16.16 format)
uint32_t* rowAccum = nullptr; // Accumulator for each output X (32-bit for larger sums)
uint16_t* rowCount = nullptr; // Count of source pixels accumulated per output X
int currentOutY = 0; // Current output row being accumulated
uint32_t nextOutY_srcStart = 0; // Source Y where next output row starts (16.16 fixed point)
if (needsScaling) {
rowAccum = new uint32_t[outWidth]();
rowCount = new uint16_t[outWidth]();
nextOutY_srcStart = scaleY_fp; // First boundary is at scaleY_fp (source Y for outY=1)
}
// Process MCUs row-by-row and write to BMP as we go (top-down)
const int mcuPixelWidth = imageInfo.m_MCUWidth;
for (int mcuY = 0; mcuY < imageInfo.m_MCUSPerCol; mcuY++) {
// Clear the MCU row buffer
memset(mcuRowBuffer, 0, mcuRowPixels);
// Decode one row of MCUs
for (int mcuX = 0; mcuX < imageInfo.m_MCUSPerRow; mcuX++) {
const unsigned char mcuStatus = pjpeg_decode_mcu();
if (mcuStatus != 0) {
if (mcuStatus == PJPG_NO_MORE_BLOCKS) {
Serial.printf("[%lu] [JPG] Unexpected end of blocks at MCU (%d, %d)\n", millis(), mcuX, mcuY);
} else {
Serial.printf("[%lu] [JPG] JPEG decode MCU failed at (%d, %d) with error code: %d\n", millis(), mcuX, mcuY,
mcuStatus);
}
free(mcuRowBuffer);
free(rowBuffer);
return false;
}
// picojpeg stores MCU data in 8x8 blocks
// Block layout: H2V2(16x16)=0,64,128,192 H2V1(16x8)=0,64 H1V2(8x16)=0,128
for (int blockY = 0; blockY < mcuPixelHeight; blockY++) {
for (int blockX = 0; blockX < mcuPixelWidth; blockX++) {
const int pixelX = mcuX * mcuPixelWidth + blockX;
if (pixelX >= imageInfo.m_width) continue;
// Calculate proper block offset for picojpeg buffer
const int blockCol = blockX / 8;
const int blockRow = blockY / 8;
const int localX = blockX % 8;
const int localY = blockY % 8;
const int blocksPerRow = mcuPixelWidth / 8;
const int blockIndex = blockRow * blocksPerRow + blockCol;
const int pixelOffset = blockIndex * 64 + localY * 8 + localX;
uint8_t gray;
if (imageInfo.m_comps == 1) {
gray = imageInfo.m_pMCUBufR[pixelOffset];
} else {
const uint8_t r = imageInfo.m_pMCUBufR[pixelOffset];
const uint8_t g = imageInfo.m_pMCUBufG[pixelOffset];
const uint8_t b = imageInfo.m_pMCUBufB[pixelOffset];
gray = (r * 25 + g * 50 + b * 25) / 100;
}
mcuRowBuffer[blockY * imageInfo.m_width + pixelX] = gray;
}
}
}
// Process source rows from this MCU row
const int startRow = mcuY * mcuPixelHeight;
const int endRow = (mcuY + 1) * mcuPixelHeight;
for (int y = startRow; y < endRow && y < imageInfo.m_height; y++) {
const int bufferY = y - startRow;
if (!needsScaling) {
// No scaling - direct output (1:1 mapping)
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT && !oneBit) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
rowBuffer[x] = adjustPixel(gray);
}
} else if (oneBit) {
// 1-bit output with Atkinson dithering for better quality
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
const uint8_t bit =
atkinson1BitDitherer ? atkinson1BitDitherer->processPixel(gray, x) : quantize1bit(gray, x, y);
// Pack 1-bit value: MSB first, 8 pixels per byte
const int byteIndex = x / 8;
const int bitOffset = 7 - (x % 8);
rowBuffer[byteIndex] |= (bit << bitOffset);
}
if (atkinson1BitDitherer) atkinson1BitDitherer->nextRow();
} else {
// 2-bit output
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = adjustPixel(mcuRowBuffer[bufferY * imageInfo.m_width + x]);
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x);
} else {
twoBit = quantize(gray, x, y);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
} else {
// Fixed-point area averaging for exact fit scaling
// For each output pixel X, accumulate source pixels that map to it
// srcX range for outX: [outX * scaleX_fp >> 16, (outX+1) * scaleX_fp >> 16)
const uint8_t* srcRow = mcuRowBuffer + bufferY * imageInfo.m_width;
for (int outX = 0; outX < outWidth; outX++) {
// Calculate source X range for this output pixel
const int srcXStart = (static_cast<uint32_t>(outX) * scaleX_fp) >> 16;
const int srcXEnd = (static_cast<uint32_t>(outX + 1) * scaleX_fp) >> 16;
// Accumulate all source pixels in this range
int sum = 0;
int count = 0;
for (int srcX = srcXStart; srcX < srcXEnd && srcX < imageInfo.m_width; srcX++) {
sum += srcRow[srcX];
count++;
}
// Handle edge case: if no pixels in range, use nearest
if (count == 0 && srcXStart < imageInfo.m_width) {
sum = srcRow[srcXStart];
count = 1;
}
rowAccum[outX] += sum;
rowCount[outX] += count;
}
// Check if we've crossed into the next output row
// Current source Y in fixed point: y << 16
const uint32_t srcY_fp = static_cast<uint32_t>(y + 1) << 16;
// Output row when source Y crosses the boundary
if (srcY_fp >= nextOutY_srcStart && currentOutY < outHeight) {
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT && !oneBit) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
rowBuffer[x] = adjustPixel(gray);
}
} else if (oneBit) {
// 1-bit output with Atkinson dithering for better quality
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
const uint8_t bit = atkinson1BitDitherer ? atkinson1BitDitherer->processPixel(gray, x)
: quantize1bit(gray, x, currentOutY);
// Pack 1-bit value: MSB first, 8 pixels per byte
const int byteIndex = x / 8;
const int bitOffset = 7 - (x % 8);
rowBuffer[byteIndex] |= (bit << bitOffset);
}
if (atkinson1BitDitherer) atkinson1BitDitherer->nextRow();
} else {
// 2-bit output
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = adjustPixel((rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0);
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x);
} else {
twoBit = quantize(gray, x, currentOutY);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
currentOutY++;
// Reset accumulators for next output row
memset(rowAccum, 0, outWidth * sizeof(uint32_t));
memset(rowCount, 0, outWidth * sizeof(uint16_t));
// Update boundary for next output row
nextOutY_srcStart = static_cast<uint32_t>(currentOutY + 1) * scaleY_fp;
}
}
}
}
// Clean up
if (rowAccum) {
delete[] rowAccum;
}
if (rowCount) {
delete[] rowCount;
}
if (atkinsonDitherer) {
delete atkinsonDitherer;
}
if (fsDitherer) {
delete fsDitherer;
}
if (atkinson1BitDitherer) {
delete atkinson1BitDitherer;
}
free(mcuRowBuffer);
free(rowBuffer);
Serial.printf("[%lu] [JPG] Successfully converted JPEG to BMP\n", millis());
return true;
}
// Core function: Convert JPEG file to 2-bit BMP (uses default target size)
bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
return jpegFileToBmpStreamInternal(jpegFile, bmpOut, TARGET_MAX_WIDTH, TARGET_MAX_HEIGHT, false);
}
// Convert with custom target size (for thumbnails, 2-bit)
bool JpegToBmpConverter::jpegFileToBmpStreamWithSize(FsFile& jpegFile, Print& bmpOut, int targetMaxWidth,
int targetMaxHeight) {
return jpegFileToBmpStreamInternal(jpegFile, bmpOut, targetMaxWidth, targetMaxHeight, false);
}
// Convert to 1-bit BMP (black and white only, no grays) for fast home screen rendering
bool JpegToBmpConverter::jpegFileTo1BitBmpStreamWithSize(FsFile& jpegFile, Print& bmpOut, int targetMaxWidth,
int targetMaxHeight) {
return jpegFileToBmpStreamInternal(jpegFile, bmpOut, targetMaxWidth, targetMaxHeight, true);
}