Xteink-X4-crosspoint-reader/lib/Epub/Epub/ParsedText.cpp
2026-02-01 13:49:52 +01:00

389 lines
13 KiB
C++

#include "ParsedText.h"
#include <GfxRenderer.h>
#include <algorithm>
#include <cmath>
#include <functional>
#include <iterator>
#include <limits>
#include <vector>
#include "hyphenation/Hyphenator.h"
constexpr int MAX_COST = std::numeric_limits<int>::max();
namespace {
// Soft hyphen byte pattern used throughout EPUBs (UTF-8 for U+00AD).
constexpr char SOFT_HYPHEN_UTF8[] = "\xC2\xAD";
constexpr size_t SOFT_HYPHEN_BYTES = 2;
bool containsSoftHyphen(const std::string& word) { return word.find(SOFT_HYPHEN_UTF8) != std::string::npos; }
// Removes every soft hyphen in-place so rendered glyphs match measured widths.
void stripSoftHyphensInPlace(std::string& word) {
size_t pos = 0;
while ((pos = word.find(SOFT_HYPHEN_UTF8, pos)) != std::string::npos) {
word.erase(pos, SOFT_HYPHEN_BYTES);
}
}
// Returns the rendered width for a word while ignoring soft hyphen glyphs and optionally appending a visible hyphen.
uint16_t measureWordWidth(const GfxRenderer& renderer, const int fontId, const std::string& word,
const EpdFontFamily::Style style, const bool appendHyphen = false) {
const bool hasSoftHyphen = containsSoftHyphen(word);
if (!hasSoftHyphen && !appendHyphen) {
return renderer.getTextWidth(fontId, word.c_str(), style);
}
std::string sanitized = word;
if (hasSoftHyphen) {
stripSoftHyphensInPlace(sanitized);
}
if (appendHyphen) {
sanitized.push_back('-');
}
return renderer.getTextWidth(fontId, sanitized.c_str(), style);
}
} // namespace
void ParsedText::addWord(std::string word, const EpdFontFamily::Style fontStyle) {
if (word.empty()) return;
words.push_back(std::move(word));
wordStyles.push_back(fontStyle);
}
// Consumes data to minimize memory usage
void ParsedText::layoutAndExtractLines(const GfxRenderer& renderer, const int fontId, const uint16_t viewportWidth,
const std::function<void(std::shared_ptr<TextBlock>)>& processLine,
const bool includeLastLine) {
if (words.empty()) {
return;
}
// Apply fixed transforms before any per-line layout work.
applyParagraphIndent();
const int pageWidth = viewportWidth;
const int spaceWidth = std::round(static_cast<float>(wordSpacing) / 100.0 * renderer.getSpaceWidth(fontId));
auto wordWidths = calculateWordWidths(renderer, fontId);
std::vector<size_t> lineBreakIndices;
if (hyphenationEnabled) {
// Use greedy layout that can split words mid-loop when a hyphenated prefix fits.
lineBreakIndices = computeHyphenatedLineBreaks(renderer, fontId, pageWidth, spaceWidth, wordWidths);
} else {
lineBreakIndices = computeLineBreaks(renderer, fontId, pageWidth, spaceWidth, wordWidths);
}
const size_t lineCount = includeLastLine ? lineBreakIndices.size() : lineBreakIndices.size() - 1;
for (size_t i = 0; i < lineCount; ++i) {
extractLine(i, pageWidth, spaceWidth, wordWidths, lineBreakIndices, processLine);
}
}
std::vector<uint16_t> ParsedText::calculateWordWidths(const GfxRenderer& renderer, const int fontId) {
const size_t totalWordCount = words.size();
std::vector<uint16_t> wordWidths;
wordWidths.reserve(totalWordCount);
auto wordsIt = words.begin();
auto wordStylesIt = wordStyles.begin();
while (wordsIt != words.end()) {
wordWidths.push_back(measureWordWidth(renderer, fontId, *wordsIt, *wordStylesIt));
std::advance(wordsIt, 1);
std::advance(wordStylesIt, 1);
}
return wordWidths;
}
std::vector<size_t> ParsedText::computeLineBreaks(const GfxRenderer& renderer, const int fontId, const int pageWidth,
const int spaceWidth, std::vector<uint16_t>& wordWidths) {
if (words.empty()) {
return {};
}
// Ensure any word that would overflow even as the first entry on a line is split using fallback hyphenation.
for (size_t i = 0; i < wordWidths.size(); ++i) {
while (wordWidths[i] > pageWidth) {
if (!hyphenateWordAtIndex(i, pageWidth, renderer, fontId, wordWidths, /*allowFallbackBreaks=*/true)) {
break;
}
}
}
const size_t totalWordCount = words.size();
// DP table to store the minimum badness (cost) of lines starting at index i
std::vector<int> dp(totalWordCount);
// 'ans[i]' stores the index 'j' of the *last word* in the optimal line starting at 'i'
std::vector<size_t> ans(totalWordCount);
// Base Case
dp[totalWordCount - 1] = 0;
ans[totalWordCount - 1] = totalWordCount - 1;
for (int i = totalWordCount - 2; i >= 0; --i) {
int currlen = -spaceWidth;
dp[i] = MAX_COST;
for (size_t j = i; j < totalWordCount; ++j) {
// Current line length: previous width + space + current word width
currlen += wordWidths[j] + spaceWidth;
if (currlen > pageWidth) {
break;
}
int cost;
if (j == totalWordCount - 1) {
cost = 0; // Last line
} else {
const int remainingSpace = pageWidth - currlen;
// Use long long for the square to prevent overflow
const long long cost_ll = static_cast<long long>(remainingSpace) * remainingSpace + dp[j + 1];
if (cost_ll > MAX_COST) {
cost = MAX_COST;
} else {
cost = static_cast<int>(cost_ll);
}
}
if (cost < dp[i]) {
dp[i] = cost;
ans[i] = j; // j is the index of the last word in this optimal line
}
}
// Handle oversized word: if no valid configuration found, force single-word line
// This prevents cascade failure where one oversized word breaks all preceding words
if (dp[i] == MAX_COST) {
ans[i] = i; // Just this word on its own line
// Inherit cost from next word to allow subsequent words to find valid configurations
if (i + 1 < static_cast<int>(totalWordCount)) {
dp[i] = dp[i + 1];
} else {
dp[i] = 0;
}
}
}
// Stores the index of the word that starts the next line (last_word_index + 1)
std::vector<size_t> lineBreakIndices;
size_t currentWordIndex = 0;
while (currentWordIndex < totalWordCount) {
size_t nextBreakIndex = ans[currentWordIndex] + 1;
// Safety check: prevent infinite loop if nextBreakIndex doesn't advance
if (nextBreakIndex <= currentWordIndex) {
// Force advance by at least one word to avoid infinite loop
nextBreakIndex = currentWordIndex + 1;
}
lineBreakIndices.push_back(nextBreakIndex);
currentWordIndex = nextBreakIndex;
}
return lineBreakIndices;
}
void ParsedText::applyParagraphIndent() {
if (extraParagraphSpacing || words.empty()) {
return;
}
if (style == TextBlock::JUSTIFIED || style == TextBlock::LEFT_ALIGN) {
words.front().insert(0, "\xe2\x80\x83");
}
}
// Builds break indices while opportunistically splitting the word that would overflow the current line.
std::vector<size_t> ParsedText::computeHyphenatedLineBreaks(const GfxRenderer& renderer, const int fontId,
const int pageWidth, const int spaceWidth,
std::vector<uint16_t>& wordWidths) {
std::vector<size_t> lineBreakIndices;
size_t currentIndex = 0;
while (currentIndex < wordWidths.size()) {
const size_t lineStart = currentIndex;
int lineWidth = 0;
// Consume as many words as possible for current line, splitting when prefixes fit
while (currentIndex < wordWidths.size()) {
const bool isFirstWord = currentIndex == lineStart;
const int spacing = isFirstWord ? 0 : spaceWidth;
const int candidateWidth = spacing + wordWidths[currentIndex];
// Word fits on current line
if (lineWidth + candidateWidth <= pageWidth) {
lineWidth += candidateWidth;
++currentIndex;
continue;
}
// Word would overflow — try to split based on hyphenation points
const int availableWidth = pageWidth - lineWidth - spacing;
const bool allowFallbackBreaks = isFirstWord; // Only for first word on line
if (availableWidth > 0 &&
hyphenateWordAtIndex(currentIndex, availableWidth, renderer, fontId, wordWidths, allowFallbackBreaks)) {
// Prefix now fits; append it to this line and move to next line
lineWidth += spacing + wordWidths[currentIndex];
++currentIndex;
break;
}
// Could not split: force at least one word per line to avoid infinite loop
if (currentIndex == lineStart) {
lineWidth += candidateWidth;
++currentIndex;
}
break;
}
lineBreakIndices.push_back(currentIndex);
}
return lineBreakIndices;
}
// Splits words[wordIndex] into prefix (adding a hyphen only when needed) and remainder when a legal breakpoint fits the
// available width.
bool ParsedText::hyphenateWordAtIndex(const size_t wordIndex, const int availableWidth, const GfxRenderer& renderer,
const int fontId, std::vector<uint16_t>& wordWidths,
const bool allowFallbackBreaks) {
// Guard against invalid indices or zero available width before attempting to split.
if (availableWidth <= 0 || wordIndex >= words.size()) {
return false;
}
// Get iterators to target word and style.
auto wordIt = words.begin();
auto styleIt = wordStyles.begin();
std::advance(wordIt, wordIndex);
std::advance(styleIt, wordIndex);
const std::string& word = *wordIt;
const auto style = *styleIt;
// Collect candidate breakpoints (byte offsets and hyphen requirements).
auto breakInfos = Hyphenator::breakOffsets(word, allowFallbackBreaks);
if (breakInfos.empty()) {
return false;
}
size_t chosenOffset = 0;
int chosenWidth = -1;
bool chosenNeedsHyphen = true;
// Iterate over each legal breakpoint and retain the widest prefix that still fits.
for (const auto& info : breakInfos) {
const size_t offset = info.byteOffset;
if (offset == 0 || offset >= word.size()) {
continue;
}
const bool needsHyphen = info.requiresInsertedHyphen;
const int prefixWidth = measureWordWidth(renderer, fontId, word.substr(0, offset), style, needsHyphen);
if (prefixWidth > availableWidth || prefixWidth <= chosenWidth) {
continue; // Skip if too wide or not an improvement
}
chosenWidth = prefixWidth;
chosenOffset = offset;
chosenNeedsHyphen = needsHyphen;
}
if (chosenWidth < 0) {
// No hyphenation point produced a prefix that fits in the remaining space.
return false;
}
// Split the word at the selected breakpoint and append a hyphen if required.
std::string remainder = word.substr(chosenOffset);
wordIt->resize(chosenOffset);
if (chosenNeedsHyphen) {
wordIt->push_back('-');
}
// Insert the remainder word (with matching style) directly after the prefix.
auto insertWordIt = std::next(wordIt);
auto insertStyleIt = std::next(styleIt);
words.insert(insertWordIt, remainder);
wordStyles.insert(insertStyleIt, style);
// Update cached widths to reflect the new prefix/remainder pairing.
wordWidths[wordIndex] = static_cast<uint16_t>(chosenWidth);
const uint16_t remainderWidth = measureWordWidth(renderer, fontId, remainder, style);
wordWidths.insert(wordWidths.begin() + wordIndex + 1, remainderWidth);
return true;
}
void ParsedText::extractLine(const size_t breakIndex, const int pageWidth, const int spaceWidth,
const std::vector<uint16_t>& wordWidths, const std::vector<size_t>& lineBreakIndices,
const std::function<void(std::shared_ptr<TextBlock>)>& processLine) {
const size_t lineBreak = lineBreakIndices[breakIndex];
const size_t lastBreakAt = breakIndex > 0 ? lineBreakIndices[breakIndex - 1] : 0;
const size_t lineWordCount = lineBreak - lastBreakAt;
// Calculate total word width for this line
int lineWordWidthSum = 0;
for (size_t i = lastBreakAt; i < lineBreak; i++) {
lineWordWidthSum += wordWidths[i];
}
// Calculate spacing
const int spareSpace = pageWidth - lineWordWidthSum;
int spacing = spaceWidth;
const bool isLastLine = breakIndex == lineBreakIndices.size() - 1;
if (style == TextBlock::JUSTIFIED && !isLastLine && lineWordCount >= 2) {
spacing = spareSpace / (lineWordCount - 1);
}
// Calculate initial x position
uint16_t xpos = 0;
if (style == TextBlock::RIGHT_ALIGN) {
xpos = spareSpace - (lineWordCount - 1) * spaceWidth;
} else if (style == TextBlock::CENTER_ALIGN) {
xpos = (spareSpace - (lineWordCount - 1) * spaceWidth) / 2;
}
// Pre-calculate X positions for words
std::list<uint16_t> lineXPos;
for (size_t i = lastBreakAt; i < lineBreak; i++) {
const uint16_t currentWordWidth = wordWidths[i];
lineXPos.push_back(xpos);
xpos += currentWordWidth + spacing;
}
// Iterators always start at the beginning as we are moving content with splice below
auto wordEndIt = words.begin();
auto wordStyleEndIt = wordStyles.begin();
std::advance(wordEndIt, lineWordCount);
std::advance(wordStyleEndIt, lineWordCount);
// *** CRITICAL STEP: CONSUME DATA USING SPLICE ***
std::list<std::string> lineWords;
lineWords.splice(lineWords.begin(), words, words.begin(), wordEndIt);
std::list<EpdFontFamily::Style> lineWordStyles;
lineWordStyles.splice(lineWordStyles.begin(), wordStyles, wordStyles.begin(), wordStyleEndIt);
for (auto& word : lineWords) {
if (containsSoftHyphen(word)) {
stripSoftHyphensInPlace(word);
}
}
processLine(std::make_shared<TextBlock>(std::move(lineWords), std::move(lineXPos), std::move(lineWordStyles), style));
}